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Abstract

The future smart grid is envisioned as a large-scale cyber-physical system encompassing advanced power, commu-

nications, control, and computing technologies. In order to accommodate these technologies, it will have to build on

solid mathematical tools that can ensure an efficient and robust operation of such heterogeneous and large-scale cyber-

physical systems. In this context, this paper is an overview on the potential of applying game theory for addressing

relevant and timely open problems in three emerging areas that pertain to the smart grid: micro-grid systems, demand-side

management, and communications. In each area, the state-of-the-art contributions are gathered and a systematic treatment,

using game theory, of some of the most relevant problems for future power systems is provided. Future opportunities for

adopting game theoretic methodologies in the transition from legacy systems toward smart and intelligent grids are also

discussed. In a nutshell, this article provides a comprehensive account of the application of game theory in smart grid

systems tailored to the interdisciplinary characteristics of these systems that integrate components from power systems,

networking, communications, and control.
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I. INTRODUCTION AND MOTIVATION

The smart grid is envisioned to be a large-scale cyber-physical system that can improve the efficiency, reliability, and

robustness of power and energy grids by integrating advanced techniques from various disciplines such as power systems,

control, communications, signal processing, and networking. Inherently, the smart grid is a power network composed

of intelligent nodes that can operate, communicate, and interact, autonomously, in order to efficiently deliver power and

electricity to their consumers. This heterogeneous nature of the smart grid motivates the adoption of advanced techniques

for overcoming the various technical challenges at different levels such as design, control, and implementation.

In this respect, game theory is expected to constitute a key analytical tool in the design of the future smart grid,

as well as large-scale cyber-physical systems. Game theory is a formal analytical as well as conceptual framework

with a set of mathematical tools enabling the study of complex interactions among independent rational players. For

several decades, game theory has been adopted in a wide number of disciplines ranging from economics and politics to

psychology [1]. More recently, game theory has also become a central tool in the design and analysis of communication

systems [2].

The proliferation of advanced technologies and services in smart grid systems implies that disciplines such as game

theory will naturally become a prominent tool in the design and analysis of smart grids. In particular, there is a need to

deploy novel models and algorithms that can capture the following characteristics of the emerging smart grid: (i)- the

need for distributed operation of the smart grid nodes for communication and control purposes, (ii)- the heterogeneous

nature of the smart grid which is typically composed of a variety of nodes such as micro-grids, smart meters, appliances,

and others, each of which having different capabilities and objectives, (iii)- the need for efficiently integrating advanced

techniques from power systems, communications, and signal processing, and (iv)- the need for low-complexity distributed

algorithms that can efficiently represent competitive or collaborative scenarios between the various entities of the smart

grid. In this context, game theory could constitute a robust framework that can address many of these challenges.

In this paper, we aim to provide a systematic treatment of applying game theory in smart grids. In particular, our

objectives are three-fold: (i)- to provide a comprehensive description of existing game theoretic applications in smart

grid networks, (ii)- to identify key open problems in smart grid networks that are bound to be addressed using game

theory, and (iii)- to pinpoint the main game theoretic tools that can be adopted for designing the smart grid. Thus, we

seek to provide the reader with a clear picture of the underlying strengths and challenges of adopting classical and

novel game theoretic techniques within the context of the smart grid.

The remainder of this paper is organized as follows. In Section II, we briefly review some key game theoretic

concepts. Then, in Section III, we study the applications of game theory in micro-grids while in Section IV, we discuss

how game theory can be applied to demand-side management. In Section V, we survey the applications of game theory

for smart grid communications. Finally, a summary is provided in Section VI.

II. REVIEW OF FUNDAMENTAL GAME THEORETIC CONCEPTS

A. Introduction and Basic Game-Theoretic Concepts

Game theory is a mathematical framework that can be divided into two main branches: noncooperative game theory

and cooperative game theory. Noncooperative game theory can be used to analyze the strategic decision making processes

of a number of independent entities, i.e., players, that have partially or totally conflicting interests over the outcome

of a decision process which is affected by their actions. Essentially, noncooperative games can be seen as capturing a

distributed decision making process that allows the players to optimize, without any coordination or communication,

objective functions coupled in the actions of the involved players. We note that the term noncooperative does not always
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imply that the players do not cooperate, but it means that, any cooperation that arises must be self-enforcing with no

communication or coordination of strategic choices among the players. To this end, one of the recently emerging areas

is that of designing incentives to enforce cooperation in a noncooperative setting, such as in [3] and [4].

1) Basics of Noncooperative Game Theory: Noncooperative games can be grouped into two categories: static games

and dynamic games. Static games are games in which the notions of time or information do not affect the action choices

of the players. Thus, in a static setting, a noncooperative game can be seen as a one-shot process in which the players

take their actions only once (simultaneously or at different points in time). In contrast, dynamic games are games in

which the players have some information about each others’ choices, can act more than once, and time has a central

role in the decision making. For static games, one general definition is the following1:

Definition 1: A static noncooperative game is defined as a situation that involves three components: the set of players

N , the action sets (Ai)i∈N , and the utility functions (ui)i∈N . In such a noncooperative game, each player i wants to

choose an action ai ∈ Ai so as to optimize its utility function ui(ai,a−i) which depends not only on player i’s action

choice ai but also on the vector of actions taken by the other players in N \ {i}, denoted by a−i.

Note that, when the game is dynamic, one needs to also define, as part of the game, additional components such as

information sets, time, or histories (i.e., sets of past actions) which are usually reflected in the utility functions. We

note that the notion of action coincides with that of a strategy in static games while in dynamic games strategies are

defined, loosely, as functions of the information available to each player (the interested reader is referred to [1] for

more details). For the scope of this paper, we will use interchangeably the terms action and strategy, unless an explicit

distinction is required. The strategy choices of the players can be made either in a deterministic manner, i.e., pure

strategies, or by following a certain probability distribution over the action sets (Ai)i∈N , i.e., mixed strategies.

2) Solution Concept: The objective of noncooperative game theory is to provide algorithms and techniques suitable

for solving such optimization problems and characterizing their outcome, notably when the players are making their

action choices noncooperatively (and independently), i.e., without any coordination or communication. One of the

most important solution concepts for game theory in general and noncooperative games in particular is that of a Nash

equilibrium. The Nash equilibrium characterizes a state in which no player i can improve its utility by changing

unilaterally its strategy, given that the strategies of the other players are fixed. For a static game, the Nash equilibrium

in pure strategies can be formally defined as follows:

Definition 2: A pure-strategy Nash equilibrium of a static noncooperative game is a vector of actions a∗ ∈ A (A is

the Cartesian product of the action sets) such that ∀i ∈ N , the following holds:

ui(a
∗
i ,a

∗
−i) ≥ ui(ai,a

∗
−i), ∀ai ∈ Ai. (1)

The Nash equilibrium serves as a building block for many types of noncooperative games. This solution concept has

both advantages and drawbacks. One of its main advantages is that it characterizes a stable state of a noncooperative

game in which no player i ∈ N can improve its utility by unilaterally changing its action ai given that the actions

of the others are fixed at a∗
−i. This state can often be reached by the players in a distributed manner and with little

coordination [1]. However, the Nash equilibrium also has some drawbacks. For instance, even in finite games (that is

games where each player has a finite action set), a Nash equilibrium is only guaranteed to exist in mixed strategies2.

Also, a noncooperative game can have multiple Nash equilibria and, thus, selecting an efficient and desirable Nash

1This is known as the strategic or normal form of a game (see [1] for more details).
2In mixed strategies, a Nash equilibrium is defined similar to Definition 2 with the strategies being a vector of probability distributions over

the action sets.
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equilibrium is a challenging topic, notably when applied to practical systems such as networks [2]. Nonetheless, several

metrics such as the price of anarchy or the price of stability can be used to study the efficiency the Nash equilibrium

such as in [5]. Moreover, the Nash equilibrium concept can be complemented and extended using many other game

theoretic techniques such as pricing so as to provide suitable solutions for noncooperative games [1].

3) Cooperative Games: In noncooperative games, it is assumed that the players are unable to coordinate or com-

municate with one another directly. However, for games in which the players are allowed to communicate and to

receive side payments (e.g., share utilities), it may be of interest to adopt fully cooperative approaches. In this respect,

cooperative game theory provides frameworks that can answer one pertinent question: “What happens when the players

can communicate with one another and decide to cooperate?”. Cooperative games allow to investigate how one can

provide an incentive for independent decision makers to act together as one entity so as to improve their position in

the game. For example, in politics, different parties may decide to merge or coalesce into a cooperative group so as

to improve their chances in obtaining a share of the power. Cooperative game theory encompasses two parts: Nash

bargaining and coalitional game. Nash bargaining deals with situations in which a number of players need to agree on

the terms under which they cooperate while coalitional game theory deals with the formation of cooperative groups or

coalitions. In essence, cooperative game theory in both of its branches provides tools that allow the players to decide

on whom to cooperate with and under which terms given several cooperation incentives and fairness rules. A detailed

treatment of cooperative game theory can be found in [2].

B. Learning in Games

While studying the efficiency of an equilibrium is central to game-theoretic design, another important aspect is to

develop learning algorithms that enable the players to reach a certain desired game outcome. In fact, choosing the

desired equilibrium is a challenging topic that has warranted many recent research efforts [1], [5–9]. To reach a certain

equilibrium, the players must follow well-defined rules that enables them to observe the current game state and make a

decision on their strategy choices. Essentially, a learning scheme is an iterative process in which each iteration involves

three key steps performed by every player [6]: (i)- observing the environment and current game state, (ii)- estimating

the prospective utility, and (iii)- updating the strategy based on the observations.

Numerous learning algorithms have been proposed in the literature [1], [5–9]. The simplest of such algorithms is the

so-called best response dynamics which is an iterative process in which, at each iteration, a player selects the strategy

that maximizes its utility, i.e., its best response strategy. Several variants of this process exist. One of the advantages

of a best response algorithm is its simple implementation, however, it suffers from several drawbacks. First, a best

response process is only guaranteed to converge to an equilibrium for certain types of utility functions [7]. Second,

best response dynamics are highly sensitive to the initial conditions and any changes in these conditions could lead

to different equilibria. Third, adopting a best response approach does not always guarantee convergence to an efficient

equilibrium [7].

In this respect, several more advanced algorithms have been studied for learning the equilibria of a game theoretic

model. While a detailed treatment of such algorithms is outside the scope of this survey3, we provide the following

summary that can guide the interested reader towards the relevant literature:

• Fictitious play: Fictitious play refers to a family of iterative learning algorithms in which, at each iteration, each

player is able to observe the actions of all other players and compute the empirical frequency with which it chooses a

3For more details, the interested reader is referred to the abundant literature on learning [1], [5–9]
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certain action. Having estimated the empirical frequency, each player can subsequently select its optimal strategy,

in a given iteration. It is shown that for some special types of games such as zero-sum games, fictitious play

always converges to a Nash equilibrium [6]. Several recent contributions have also proposed many enhancements

to fictitious play algorithms [6–8].

• Regret matching: Fictitious play and best response algorithms are based on the idea that, at each iteration, a player

attempts to maximize its utility. In contrast, regret matching is a type of learning algorithms in which the players

attempt to minimize their regret from using a certain action, i.e., the difference between the utility of always

playing a certain action and the utility that they achieved by playing their current strategy. An in-depth treatment

of regret matching algorithms is found in [6], [7], [9].

• Other learning schemes: Many other types of learning schemes such as reinforcement learning or stochastic learning

are also used in various game-theoretic scenarios in order to find a desirable state of the system [6].

Clearly, learning is an integral part of game theory and it lies at the heart of designing stable and efficient models.

C. Game Theory in the Smart Grid: Potential and Challenges

Within the context of smart grids, the applications of noncooperative games and of learning algorithms are numerous.

On the one hand, noncooperative games can be used to perform distributed demand-side management and real-time

monitoring or to deploy and control micro-grids. On the other hand, economical factors such as markets and dynamic

pricing are an essential part of the smart grid. In this respect, noncooperative games provide several frameworks ranging

from classical noncooperative Nash games to advanced dynamic games which enable to optimize and devise pricing

strategies that adapt to the nature of the grid. Several practical noncooperative game examples in the smart grid are

treated, in details, in the remainder of this paper.

In smart grids, with the deployment of advanced networking technologies, it is often possible to enable a limited

form of communication between the nodes which paves the way for introducing cooperative game-theoretic approaches.

In fact, the integration of power, communication, and networking technologies in future grids opens up the door for

several prospective applications in which smart grid nodes can cooperate so as to improve the robustness and efficiency

of the grid. One simple example would be to apply cooperative game theory in order to study how relaying can be

performed in a large-scale smart grid network so as to improve the efficiency of the communication links between

smart grid elements. Other cooperative game applications are also possible as seen later in this survey.

Clearly, game-theoretic approaches present a promising tool for the analysis of smart grid systems. Nonetheless,

the advantages of applying distributed game-theoretic techniques in any complex system such as the smart grid are

accompanied by key technical challenges. First, one of the underlying assumptions in classical game-theoretic designs is

that the players are rational, i.e., each player makes its strategy choice so as to optimize its individual utility and, thus,

conform with some notion of equilibrium play. In practical control systems such as the smart grid, as the individual

nodes of the system interact and learn their strategies, one ore more nodes might deviate from the intended play and

make non-rational decisions, i.e., choose unintended strategies, due to various factors such a failure or delay in learning.

These inaccurate strategy choices can eventually lead to a non-convergence to the desired equilibrium and, hence, impact

the overall control system stability. The impact of such bad decisions becomes more severe in practical deployments

in which the smallest perturbation to the system stability can lead to outages or other detrimental consequences. As a

result, when designing game-theoretic models for the smart grid, it is imperative to emphasize robustness in the model

and algorithm design.
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Fortunately, the analytical framework of game theory presents several remedies for this difficulty [1], [5–9]. First,

classical game-theoretic techniques already provide a myriad of analytical approaches for ensuring robustness against

errors. These approaches include the concept of a perturbed equilibrium (e.g., trembling hand equilibrium or strong

time consistency) [1], [7] and games with imperfect information or imperfect observability [1], among others. Second,

one common approach for overcoming the instability resulting from bad decisions is to design learning algorithms in

which the players are allowed to “experiment”, i.e., choose unintended strategies. The essence of these algorithms is to

turn the bad decisions into an opportunity to improve the efficiency of the reached equilibrium. These learning schemes

fall under the umbrella of learning by experimentation which has received significant attention recently in game theory

and multi-agent learning (see [6] and references therein). These approaches have also been recently shown to perform

well in practical communication systems [2], [9] and, hence, it is natural to leverage their use into practical control

systems such as the smart grid, so as to avoid erroneous decisions and instability. Third, the emerging field of game

theory with bounded rationality provides a set of tools and concepts (such as the limited foresight equilibrium [10]

or the logit equilibrium [11]) for designing distributed optimization techniques that are robust to possible non-rational

decisions or deviations from the players [12]. These techniques can certainly be leveraged so as to address the issue of

wrongful strategy choices during game-theoretic designs.

Beyond errors in the decision making process, game-theoretic designs in control systems also face other important

challenges such as avoiding the possibility of cheating (in power market auctions for example) and adapting the learning

process to environmental variations, among others. To address these issues several new techniques such as strategy-proof

auctions or advanced learning techniques have been proposed in [6], [7].

In summary, game theory has a strong potential for addressing several emerging problems in smart grid systems, as

detailed in the remainder of this article. However, in order to reap the benefits of game-theoretic designs, one must

address some of the aforementioned challenges, notably when transferring these designs from a simulated environment

to a practical system. Certainly, to do so, constant feedback between theory and practice is needed. The recent results and

advances in game-theoretic designs in practical wireless and communication systems [2], [9] corroborate the promising

potential of deploying these designs in the future smart grid and could serve as a first step towards practical adoption

of game theory in power systems.

In the remainder of this paper, we explore the applications of game theory in three key smart grid areas: (i)- micro-grid

distribution networks, (ii)- demand-side management, and (iii)- communication protocols. We provide several carefully

drawn examples on applying game theory in each one of these areas, and, then, we shed a light on future opportunities

and key challenges.

III. GAME THEORY IN MICRO-GRID DISTRIBUTION NETWORKS

In this section, we provide an overview on the deployment of micro-grids in future power systems and a survey

on potential applications of game theory in micro-grids. Then, we study, in detail, the use of cooperative games for

enabling energy trading between micro-grids and the use of noncooperative games for load and source control. We

conclude with insights on future game-theoretic approaches for micro-grid distribution networks.

A. Introduction to Micro-grids

A power grid system can, in general, be divided into two main phases: electric power transmission and electric

power distribution [13]. Electric power transmission or high-voltage transmission deals with the transmission of the

energy generated at the power plants (i.e., the transfer of energy, over transmission lines, to substations that service
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some geographical areas). In contrast, electric power distribution is the last stage for delivering electricity in which

the distribution network carries the electricity received at a substation and, subsequently, delivers it to the consumers’

premises. A step-down transformer serves as a crossing point between the transmission and the distribution networks.

This transformer serves to lower the high-voltage arriving from the transmission network so as to allow the distribution

network to operate in low (or medium) voltage ranges.

In the past decade, researchers have been investigating the possibility of having groups of controllable loads and

sources of energy at the distribution network side of a power grid [14]. In this context, the concept of a micro-grid

is defined as a networked group of distributed energy sources such as solar panels or wind turbines located at the

distribution network side and which can provide energy to small geographical areas. The network of micro-grids is

envisioned to operate both in conjunction with the grid as well as autonomously in isolated mode (known as the island

mode) [14]. In this respect, controlling the operation of the micro-grids and integrating them in the smart grid introduces

several technical challenges that need to be addressed so as to ensure an efficient and reliable grid operation.

In classical power grids, it is common to optimize the system by defining and solving a system-level optimization

problem based on a centralized objective function. However, in the presence of micro-grids, it is of interest to define

a specific objective function for each micro-grid. This is mainly due to the heterogeneous nature of the micro-grid

network which often consists of different components such as electric cars, energy storage devices (e.g. batteries),

diesel generators, wind turbines, and solar farms. To this end, it is only natural that one adopts distributed analytical

techniques such as game theory so as to control and optimize smart grid systems that encompass a micro-grid distribution

network. This is further motivated by the vision of autonomous micro-grids which can act and react to various variables

in the power grid system. In this respect, several open problems in micro-grids can be treated using game theory such

as in [15–23] (and references therein).

To give more insights on these open problems and on game-theoretic micro-grid designs, in what follows, first, we

provide a step-by-step tutorial on how cooperative game theory can enable cooperative energy exchange in micro-grids.

Then, we overview the use of noncooperative games for modeling the interactions between loads and sources in micro-

grids. This section is concluded with a brief overview on other existing game-theoretic techniques in micro-grid design

as well as with a discussion on the future outlook of game theoretic applications in micro-grids.

B. A Game Theoretic Model for Cooperative Energy Exchange

1) Cooperative Energy Exchange Model: In existing power systems, consumers are serviced by a main electricity

grid that delivers the power over the transmission lines to a substation which, in turn, delivers the power over the

low-voltage distribution network. In the presence of micro-grids, it is desirable to allow the micro-grids to service

some small geographical areas or groups of consumers, so as to relieve the demand on the main grid. However, the

intermittent generation of certain micro-grids coupled with the unpredictable nature of the consumers’ demand implies

that customers serviced solely by a micro-grid may, at certain points in time, become in need for extra energy from

other sources. Typically, this extra energy need can be provided by the main power grid.

The future smart grid is envisioned to encompass a large number of micro-grid elements. Hence, whenever some

micro-grids have an excess of power while others have a need for power, it might be beneficial for these micro-grids

(and their consumers) to exchange energy among each other instead of requesting it from the main grid. The advantage

of such a local exchange is two-fold: (i)- energy exchange between nearby micro-grids can significantly reduce the

amount of power that is wasted during the transmission over the distribution lines and (ii)- performing a local exchange

of energy contributes further to the autonomy of the micro-grid system while reducing the demand and reliance on the
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main electric grid. Thus, it is of interest to devise a scheme that enables such a local energy trade between micro-grid

elements that are in need of energy, i.e., buyers and micro-grids that have an excess of energy to transfer, i.e., sellers.

To this end, as shown in [22], one can use cooperative games to introduce a cooperative energy exchange mechanism

in future grids.

Consider a distribution network composed of a single substation which is connected to the main grid as well as to

N micro-grids in the set N . Each micro-grid i ∈ N services a certain demand (e.g., a group of consumers or a small

area) and the difference between its generation and demand is captured by a variable Qi which can be considered as

random (due to the random nature of renewable energy generation and/or consumers’ behavior). At a given period of

time, depending on the consumers’ demand and power generation, a certain micro-grid i ∈ N (or its served area) may

have either a surplus of power (Qi > 0) to sell or a need to acquire power to meet its demand4(Qi < 0).

In the absence of storage and cooperation, each micro-grid i ∈ N exchanges (or acquires) the amount of power Qi

with the main smart grid using the main substation. This transfer of power is accompanied by a power loss over the

distribution lines inside the micro-grid network. In this setting, by focusing on these power losses, the noncooperative

utility of any micro-grid i can be expressed as the total power loss over the distribution line due to the power transfer [22]:

u({i}) = −wiP
loss
i0 , (2)

where P loss
i0 is power lost during power exchange between i and the substation, wi is the price paid by i per unit of

power loss, and the minus sign is inserted to turn the problem into a maximization. The power loss P loss
i0 is a function of

several factors such as the distance between the micro-grid and the substation (due to the resistance), the power transfer

voltage, the amount of power Qi that is being transferred, as well as the losses at the transformers of the substation.

Instead of exchanging power exclusively with the substation, the micro-grids may want to form a cooperative group,

i.e., a coalition, which constitutes a local energy exchange market. Inside this coalition, the micro-grids can transfer

power locally among each other thus reducing the power losses and improving the autonomy of the micro-grid network.

This reduction of wasted power is mainly due to two factors: (i)- several micro-grids may be closely located and, thus,

can transfer power over shorter distances and (ii)- local power exchange can help to avoid the power losses at the level

of the substation’s transformer. Therefore, depending on their location and their power needs, the micro-grids have

an incentive and a mutual benefit to cooperate so as to trade power locally within their given distribution network.

An illustration of the proposed system model with cooperative coalitions is shown in Fig. 1 for 5 micro-grids. Note

that, while Fig. 1 shows that the micro-grid elements are cooperating, this cooperation may be executed either using

intelligent software agents or via an external entity that owns or operates the micro-grids.

2) Game Theoretic Formulation and Results: To study a cooperative energy exchange model such as in Fig. 1, a

coalitional game can be formulated between the micro-grids in the set N . A coalition S ⊆ N is defined as a number of

cooperative micro-grids which can be divided into two groups: the group of sellers denoted by Ss ⊂ S and the group

of buyers which we denote by Sb ⊂ S, such that Ss ∪ Sb = S. Inside each coalition, the sellers in Ss may exchange

power with the buyers in Sb as well as with the substation (if required).

The utility of a coalition S can be expressed as a function of the members of S as well as of the way in which

sellers and buyers are matched (i.e., which seller is providing energy to which buyer). Matching the sellers and the

buyers is a challenging task on its own, which can also be addressed using game theoretic techniques as discussed later.

4Micro-grids who are able to exactly meet their demand, i.e., Qi = 0, do not participate in any energy exchange. However, they may remain
connected to the larger grid in order to maintain frequency stability.
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Fig. 1. An illustration of a cooperative micro-grid model.

Nonetheless, given a certain buyer-to-seller association Π resulting from any matching algorithm between buyers and

sellers inside a coalition S, the utility of S can be written as:

u(S,Π) = −

 ∑
i∈Ss,j∈Sb

wiP
loss
ij +

∑
i∈Ss

wiP
loss
i0 +

∑
j∈Sb

wjP
loss
j0

 , (3)

where wi is a pricing factor, P loss
i0 and P loss

j0 are, respectively, the power losses during the distribution of power (if any)

between the sellers and buyers of S and the main substation while P loss
ij represents the power lost over the distribution

lines during the local power transfer, inside S, between a seller i and a buyer j. These losses are, as mentioned before,

function of various factors such as distance and distribution voltage. There are two key questions that need to be

answered: (i)- for a given coalition S, how can one match the sellers to the buyers inside S so as to optimize (3)? and

(ii)- how can the micro-grids interact to form coalitions such as in Fig. 1 so as to minimize the power losses?

To address the first question, one can adopt advanced techniques from two main game theoretic branches: auction

theory and matching games [1], [2], [24], [25]. Auction theory is essentially an analytical framework used to study

the interactions between a number of sellers, each of which has some commodity or good to sell (in this example,

the commodity is power), and a number of buyers interested in obtaining the good so as to optimize their objective

functions. The outcome of the auction is the price at which the trade takes place as well as the amount of good sold to

each buyer. In the studied model, given that, inside a coalition S (here, a coalition refers to a fixed grouping of seller

and buyer micro-grids), multiple buyers and sellers can exist, one suitable framework to model the matching between

buyers and sellers could be through the use of a double auction. Note that, whether a micro-grid acts as a seller or a

buyer is dependent on its current generation and demand state, as previously mentioned. Thus, within every coalition

S, one can formulate a double auction game in which the players are the buyers and sellers inside S. The strategies of

every member in S correspond to the price at which it is willing to buy/sell energy and the quantity that it wishes to

sell/buy. The objective of each player is to determine the optimal quantity and price at which it wants to trade so as

to optimize its objective function. Using techniques such as those developed in [24], [25] or in our work in [17], one

can determine the price at the equilibrium along with the quantities that are being traded, i.e., the matching of sellers

to buyers. Thus, the outcome of this auction determines the prices and quantities traded inside S. Subsequently, the



9

2 5 10 15 20 25 30
14

15

16

17

18

19

20

21

22

Number of micro−grids (N)

A
ve

ra
ge

 p
ay

of
f (

po
w

er
 lo

ss
) 

pe
r 

m
ic

ro
−

gr
id

 (
M

W
)

 

 

Classical noncooperative scheme
Cooperative energy exchange

Fig. 2. Average power loss per micro-grid resulting from applying a cooperative game for energy exchange in micro-grid networks.
quantities can be used to determine the payoff of each player in S as in (3), and, hence, the stability or result of the

second question, i.e., how can the micro-grids form the coalitions whose answer can be found using the framework

of coalition formation games. Note that, although (3) incorporates only the quantities (through the power over the

distribution lines), it can also be extended to become a function of the trading price resulting from the auction. Thus,

a complete solution of the cooperative energy exchange problem requires solving two correlated games: an auction or

matching game inside the coalitions and a coalition formation game to build the coalitions.

The work in [22] presented a solution for the second question while adopting a heuristic seller-to-buyer matching

procedure. First, we note that (3) can be seen as the costs that a coalition S pays due to the wasted power. These costs

can be either actual monetary losses or virtual losses imposed by the power grid operator so as to control the wasted

power in the network. In both cases, one can assume that (3) is a transferable utility in the sense that, to evaluate the

payoff of every micro-grid in S, one can divide (3) between the members of S, in any arbitrary manner.

The solution to the coalition formation game proposed in [22] can be described as follows. Using an underlying

communication network, at any period of time, the micro-grids can exchange or signal their energy needs (e.g., using

agents). Group of micro-grids that find it beneficial to cooperate by evaluating (3) can decide to join together and form

a single coalition S. In order to evaluate (3) and decide on whether to form a coalition or not, the involved micro-grids

must: (i)- agree on the procedure for matching sellers to buyers (e.g., using the heuristic of [22]) and (ii)- compute

their prospective payoff which is found through a mapping that associates with every utility such as in (3) a vector ϕS

of payoffs where each element ϕS
i is the individual utility of micro-grid i when it is part of coalition S. This mapping

can represent certain fairness rules or other criteria set by the power grid operator. Subsequently, a group of micro-grids

would cooperate and form a single, larger coalition if this formation increases the payoff ϕi (reduces the power losses)

of at least one of the involved micro-grids without decreasing the payoff of any of the others. Similarly, a coalition of

micro-grids can decide to split and divide itself into smaller coalitions if it is beneficial to do so.

Using this procedure for coalition formation, combined with a fixed heuristic for matching sellers to buyers, leads

to promising results as shown using simulations in [22]. For example, the results in Fig. 2 show that, compared to

the classical noncooperative energy exchange scheme, the use of cooperative games yields a performance advantage,

in terms of average power loss per micro-grid, which is increasing with the number of micro-grids N and reaching

up to 31% of loss reduction (at N = 30) relative to the classical scheme. Further, the simulations in [22] show which

coalitions would emerge in a typical network as well as the overhead required for forming these coalitions.

Clearly, cooperative games could become a foundation for introducing local energy exchange between micro-grids

in future smart grid systems. This local energy exchange could constitute one of the main steps towards the vision of
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an autonomous micro-grid network.

3) Future Opportunities: The model studied in [22] can be used as a basis to develop more advanced and practical

cooperative energy exchange models. In fact, several future opportunities for extending the work in [22] can be explored:

• Proposing algorithms, based on auction theory or matching games, that can lead to optimal and stable associations

between micro-grids that act as seller (i.e., have an excess of energy) and micro-grids that act as buyer (i.e., have

a deficiency of energy).

• Developing novel equilibrium concepts that are suitable to characterize a hybrid game composed of a coalition

formation game for selecting the cooperative partners and an auction or matching game for solving the seller-to-

buyer association problem.

• Developing utility functions that capture, not only the power losses such as in [22], but also the prices during

energy trade and the costs for communication overhead.

• Studying dynamic cooperative game models that can capture the instantaneous changes in renewable energy

generation and consumer loads.

• Analyzing, using classical noncooperative games, the impact of storage on the outcome of the local energy exchange

model as well as the coalitional game formulation.

• Proposing a practical implementation that can be used as a testbed to enable cooperative energy exchange using

game theory in future smart grid.

C. Distributed Control of Micro-grids using Noncooperative Games
In classical large-scale power systems, any energy mismatch between demand and generation is often assumed to be

compensated by a slack bus. However, in micro-grids, such a power reserve is often absent. Thus, it is of interest to have

a mechanism which enables a distributed operation of the micro-grids, taking into account the individual constraints and

objectives of each component. Moreover, most literature typically deals either with managing the load (demand-side) or

the energy source (supply-side). In smart grids encompassing small-scale power components such as micro-grids, one

must develop a generic framework that can capture both the competition over the energy resources that arises between

the loads as well as the competition over the supply of energy that arises between the sources.

Toward this goal, the work in [23] proposes a noncooperative game approach for controlling both the loads and

energy sources in a small-scale power system such as a micro-grid. Formally, the authors define a static noncooperative

game in which the player set N = L ∪ S represents the group of loads L and power sources S and the strategy of

each player depends on its type. For a source node i ∈ S , the strategy ai is chosen so as to regulate the voltage. The

strategy space is typically the space of voltages that can be adopted, as explained in [23]. In contrast, for a load l ∈ L,

the strategy al is chosen so as to control its variable shunt resistance to the ground. Often, for a load, the strategy

space can be chosen as the set of possible values for the shunt resistance which is a closed subset of the space of real

numbers [23].

The objective functions of the source and the load are application-dependent, but, in general, they will be function

of the strategies, the currents, the voltages, and the impedance as discussed in [23]. For the source and load interaction

game, the key question that must be answered pertains to how a load (source) can choose is strategy so as to optimize

its objective function given the impact of this strategy on the source’s (load’s) strategic decision as well as on the

strategies of the other loads (sources). The coupling between the strategies comes from the well-known dependence

between the value of the resistance (strategy of the load) and the voltage (strategy of the source).
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Under different objective functions and scenarios, the work in [23] studies the Nash equilibrium as a solution for this

strategic noncooperative game between sources and loads in a small-scale power system. On the one hand, for a simple

one source, one load example in which the source wishes to regulate its terminal voltage while the load wishes to regulate

its input power, the authors show that two Nash equilibria exist: (i)- an undesirable equilibrium which corresponds to the

limiting case in which the maximum power transfer of the system is reached and the power regulation objective of the

load cannot be fully met because of excessive line impedance and (ii)- a desirable equilibrium under which both load

and source are able to regulate their power and optimize their utilities. For various other examples, the authors discuss

several approaches for studying the existence and efficiency of the equilibria. Moreover, the use of Nash bargaining for

improving the performance of a two-load game is also discussed in [23]. We note that, in many cases of interest, the

work in [23] provides algorithms for finding equilibrium solutions which are based on known algorithms such as those

used in classical convex or mixed-integer optimization, for example.

Essentially, the work in [23] establishes how game theory can be used to define individual objectives for small-scale

power systems such as micro-grids. This work clearly shows that, by allowing loads and sources to act in a distributed

manner, one can have several insights on how these loads and sources can achieve their objectives (e.g., regulate

their power). The main message that can be extracted from [23] is two-fold: (i)- the use of noncooperative games can

adequately model the interactions between sources and loads in a small-scale power system and (ii)- advanced analytical

techniques and algorithms are still needed to enable the operation at Nash equilibrium points as well as to improve the

efficiency of these points. Moreover, one can envision several future directions that build upon [23], as follows:

• Studying the impact of dynamics (e.g., variations in the sources generation rate) on the outcome of the game and

proposing dynamic-game approaches to address this issue which is of central importance when the sources are

renewable energy devices. This can be done by introducing notions of information and time evolution.

• Developing algorithms that can characterize the equilibria for multi-player source/load games.

• Introducing additional players and strategies into the game such as enabling bus selection or introducing other

power components as players.

Basically, game theory can constitute a solid foundation for enabling distributed control of loads and sources in small-

scale power systems by developing individual objective optimization, distributed operation, and practical algorithms.

D. Other Game-Theoretic Techniques in Micro-Grid Design

Beyond cooperative energy exchange and distributed control, several other game theoretic applications in micro-grids

can also be studied. For example, in [15], the authors propose a game theoretic framework that enables the micro-grids

to decide on whether to store or use energy so as to meet the predicted demand of their consumers. The essence of the

framework is based on two types of games: a noncooperative solution for the Potluck problem and an auction game

for determining the pricing in the micro-grid network.

The Potluck problem is essentially a formulation of the situation that involves two types of players: players that

have a certain good to supply and players that have a certain need for this good. Essentially, the Potluck problem

adopts noncooperative techniques to study how the players can decide, without communication, on the amount that

they need to supply and the amount that they need to demand so as to reach a satisfactory equilibrium point in which

the supply and the demand are equal. Reaching such a point may not possible if the players act rationally, i.e., try

to improve their individual utilities [1]. In this case, the Potluck problem has no equilibrium and results in a system

that oscillates between two states: one in which the demand exceeds the supply and one in which the supply exceeds
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TABLE I
SUMMARY OF GAME THEORETIC TECHNIQUES IN MICRO-GRID DISTRIBUTION NETWORKS.

Application Game Theoretic Technique Main Future Extensions
Subsection III-B: Coopera-
tive energy exchange be-
tween micro-grids (such as
in [22]).

Coalitional games
• Use matching games or auctions for assigning sellers

to buyers.
• Propose new equilibrium concepts for cooperative

games with auctions.
• Include communication overhead and market prices.
• Study dynamic models and include storage capabil-

ities.

Subsection III-C: Distributed
control of loads and sources
in a small-scale power sys-
tem (such as in [23]).

Noncooperative Nash games
• Study the impact of variations in generation rates on

the system.
• Develop algorithms for finding equilibria in multi-

source, multi-load games.
• Study evolutionary game models that include notions

of information and time.
• Develop heterogeneous games which comprise, be-

yond sources and loads, additional smart grid com-
ponents as players with different strategies.

Controlling the usage of
stored micro-grid energy
(such as in [15]).

Noncooperative Nash games,
the Potluck problem, and
auction theory

• Introduce a stochastic game model.
• Develop learning algorithms for multi-player storage

control in micro-grids.

Other future game theoretic applications in micro-grids could involve several types of games such as facility location
games, Stackelberg games, advanced Nash games, and others.

the demand [15]. To overcome this problem, the authors in [15] propose a learning scheme that enables a non-rational

behavior of the players and which can reach a desired point of the system. Then, the authors complement their scheme

with an auction algorithm that enables to study the pricing that emerges in the micro-grid energy exchange market. The

results are focused on two-player games, but extensions to multi-player are also possible. Beyond [15], wind turbine

control, pricing issues, and cooperation in micro-grids are also discussed in [16–23].

E. Future Opportunities for Applying Game Theory in Micro-Grids

The autonomous nature of the micro-grids combined with the need for individual objectives implies that game theory

can be one of the cornerstones of future micro-grids. Beyond the perviously presented applications, various future

opportunities exist such as:

• Using facility location games for deploying micro-grids efficiently in a new electricity network as well as for

locating aggregation stations for electric vehicles.

• Introducing noncooperative game models to enable an autonomous switching between the two main operating

modes of the micro-grids: autonomous mode (island) and cooperative mode (in coordination with the main grid).

• Applying Stackelberg games to study the market and energy coordination between the main electricity grid and

the micro-grid.

• Applying network formation games for enabling information coordination between micro-grids.

• Modeling the dynamics and interactions between electric vehicles and the grid using dynamic game theory.

A summary of the different applications of game theory in micro-grids is shown in Table I.
IV. DEMAND-SIDE MANAGEMENT IN SMART GRIDS

In this section, we provide an overview on demand-side management in smart grids. Then, we study two main

applications of game theory for demand-side management: scheduling of appliances and storage management. We

conclude this section with an overview on potential future applications.
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A. What is Demand-Side Management?
Demand-side management is an essential characteristic of current and future smart grid systems using which a utility

company is able to control the energy consumption at the consumers’ premises. For example, demand-side management

at residential homes aims at reducing consumption by providing energy-efficient equipment and encouraging energy-

aware consumption. Also, demand-side management can be used to provide incentives to the consumers to shift their

consumption to hours during which the energy grid is less loaded (e.g., by providing lower prices during night hours).

Demand-side management often entails interactions between two main players: utility companies and consumers.

Consumers can be residential houses, businesses, or even electric cars. These interactions can be at technical levels (i.e.,

interactions between smart meters and utility company control centers) as well as at social levels (i.e., service agreements

between the utility companies and their consumers). Thus, implementing efficient demand-side management schemes

involves a variety of challenges such as devising pricing schemes that enable efficient load shifting, implementing

scheduling scheme for appliances, monitoring and shaping consumer behavior, among others.

Robust and smart demand-side management techniques are expected to lie at the heart of future power systems. In

fact, enabling the interconnection of consumers, electric cars, micro-grids, and utility companies can only be made

possible with efficient demand-side management techniques. The essence of demand-side management revolves around

the interactions between various entities with specific objectives which are reminiscent of the players’ interactions in

game theory. In fact, game theory provides a plethora of tools that can be applied for pricing and incentive mechanisms,

scheduling of appliances, and efficient interconnection of heterogeneous nodes.

Note that, here, we group together the two related areas of demand-side management and demand response models.

Demand response models refer to the programs that utility companies use to encourage the grid users to dynamically

change their electricity load (according to a certain signal from the company, such as pricing information)) so as to have

short-term reduction in energy consumption. In essence, demand response models must be able to shape the demand or

match the supply so as to better utilize the power system. In contrast, demand-side management refers to program that

attempt to make the users more energy-efficient on a longer time-scale. Often, demand response models are included

under the umbrella of demand-side management due to the close correlation between the two.

B. Game Theory and Demand-Side Management

Game theory has been extensively used for demand-side management and demand-response models in smart grids

such as in [26–33]. For instance, the work in [26] studies two market models suitable for matching the supply and

shaping the demand in a smart grid system. The main focus is on providing markets in which the consumers can shed

or increase their load (depending on whether there is a surplus or deficit of energy) so as to much the supply. The

authors study oligopolistic markets and discuss the properties of the resulting competitive equilibria. The work in [30]

studies a more elaborate demand response model in which a time-varying pricing model is developed so as to align the

objective function of each household appliance with the social welfare.

In [27], the authors apply a simple class of noncooperative games, the so-called congestion games, as a means

for performing dynamic pricing so as to control the power demand in an effort to achieve, not only net energy

savings, but also an efficient utilization of the energy. The authors discuss the key characteristics of the demand

side management congestion game and show how the equilibrium can be reached using a distributed algorithm. Several

additional applications of demand-side management and demand-response models are found in [28], [29], [31–33].



14

In order to provide a better overview on how game theory can be applied for demand-side management, in this

section, we start by analyzing a noncooperative game approach for modeling the interactions between a number of

consumers and an energy generator or substation. Then, we discuss the use of noncooperative games for micro-storage

management. We conclude with an outlook on future opportunities for game-theoretic demand-side management.

C. Game Theory for Demand-Side Management through Energy Consumption Scheduling
1) Introduction and Model: Classical demand-side management schemes such as direct load control and smart pricing

are focused on the interactions between a utility company and each individual end-user. On the one hand, direct load

control enables the utility company to control the appliances inside the home of each individual consumer, based on

a certain agreement. On the other hand, the essence of smart pricing is to provide monetary incentives for the users

to voluntarily shift their consumption and balance the load on the electricity grid. While these schemes have been

extensively deployed, they are all focused on the individual user energy. However, the authors in [32] show that, instead

of focusing only on the individual user consumption such as in classical schemes, it is better to develop a demand-side

management approach that optimizes the properties of the aggregate load of the users. This is enabled by the deployment

of communication technologies that allow the users to coordinate their energy usage, when this is beneficial [32].

Similar to [32], we consider a power system with N users and a single energy source, such as a substation. A wired

or wireless technology interconnects the smart meters and the sources, hence, enabling them to communicate at any

point in time. We let N denote the set of all users. Assuming time is slotted into hour-long intervals, at any given

hour h the total consumption of all users is denoted by Lh =
∑

i∈N lhi , with lhi being the energy consumption of user

i at hour h. This total consumption incurs a cost on the utility company which could reflect either a physical cost (i.e.,

costs for thermal generators) or a virtual cost that is used by the utility company so as to encourage an energy-aware

behavior by the users [32]. Practical cost functions such as thermal generation costs are increasing with the load and,

often, strictly convex. As a result, let
∑H

h=1Ch(Lh) denote the total cost incurred on the utility company over a period

of H hours by all N users with Ch(·) being a strictly convex and increasing function. Note that, for a certain load

value, the cost function Ch(·) could lead to different costs depending on the hour during which this load is consumed.

Based on the cost
∑H

h=1Ch(Lh) the utility company would decide on how much to charge the users for the

consumption during the H hours. The dependence of the cost function on the total users’ load Lh implies that a

change in the load of one user would impact the total cost of the utility company which, in turn, impacts the individual

charges of the users. Hence, clearly, the users can be seen as independent decision makers whose choices of scheduling

times and loads would impact one another. In this model, the objective is to enable the smart meters at the users

premises to utilize automatic energy consumption schedulers so as to choose when to schedule appliances in order to

minimize the total cost on the utility company and, subsequently, minimize the charges on each individual user. To

address this problem, a game theoretic formulation is suitable as shown in [32] and discussed next.

2) A Noncooperative Game for Scheduling Appliances: Essentially, we are interested in devising a demand-side

management scheme that enables to schedule the shiftable appliances such as dish washers or dryers, while minimizing

the overall energy consumption and, thus, the charges on the consumers. In this context, as in [32], we can formulate a

static noncooperative game in which the set of users N represents the players with the strategy of every player i ∈ N
being a vector xi which is formed by stacking up energy consumption schedule vectors of the form xi,a = [x1i,a, . . . , x

H
i,a]

where xhi,a is the energy consumption scheduled for an appliance a by user i.

In this noncooperative game, each user i needs to select its vector xi so as to optimize a utility function ui(xi,x−i)

which is mainly a function of the cost function Ch at each time h. The exact expression of the utility depends on how
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the utility company performs the billing as well as on the type and energy requirement of the users’ appliances. Exact

expressions for this utility were derived in [32] under the assumption that each user is billed proportionally to its total

consumption. In consequence, we have a static noncooperative game which we refer to as the appliances scheduling

game and we can make several remarks on the properties of this game based on the results in [32], as follows:

1) A Nash equilibrium for the appliances scheduling game always exists and all equilibria coincide with the optimal

scheduling policy that minimizes the overall utility company cost which is given by
∑H

h=1Ch(Lh).

2) The Nash equilibrium of the game corresponds to a unique set of total loads lh,NE
i at each user i ∈ N .

3) Each user can map the total load lh,NE
i at the equilibrium to any feasible set of strategies xNE

i . For the utility

function considered in [32], the appliances are, thus, indifferent to when they are scheduled as every schedule

would always correspond to the minimum of the total cost incurred on the utility company.

The authors in [32] propose an algorithm that uses best response dynamics to find the Nash equilibrium while ensuring

that no user has an incentive to cheat and announce an incorrect energy schedule. A best response algorithm mainly

relies on a sequence of decisions in which each player chooses the strategy that maximizes its utility, given the current

strategies of the other players. It is shown in [32] that, for the appliances scheduling game, best response dynamics

always converges to an equilibrium. The simulations in [32] also show that, whenever consumers have a good number

of shiftable appliances, adopting a game-theoretic approach for scheduling these appliances can reduce the energy costs

of up to 18% compared to existing solutions while also reducing the peak-to-average ratio of the energy demand (i.e.,

the ratio of the energy at peak hour to the average energy over a time period H) of about 17%.

3) Future Extensions: Clearly, using noncooperative games can lead to smarter demand-side management schemes.

The model studied in this subsection can be extended in a variety of ways such as by:

• Introducing a utility function in which the time at which an appliance is scheduled impacts the payoff of the users.

The objective of the game becomes to optimize a tradeoff between minimizing the charges and optimizing the

appliances’ waiting time. By doing so, the properties and results of the game formulated in [32] are significantly

impacted, although the noncooperative framework is still useful to analyze the problem.

• Considering multiple energy sources and the interactions among them. In such a setting, hierarchical games such

as Stackelberg games are a good candidate to provide insights on the appliances’ scheduling problem.

• Studying a stochastic game counterpart of this model in which the smart meters schedule the appliances instanta-

neously based on the time-varying conditions of the network (e.g., the varying generation conditions of the energy

source). The studied game can, in fact, constitute a building block for such a stochastic formulation. For instance,

a stochastic game is essentially a dynamic game composed of a number of stages and in which, at the beginning

of each stage, the game is in a specific state. In such a setting, the studied game and its solution can be used to

solve or study each one of these stages. Hence, the studied game can serve as a single stage in a stochastic game

setting (under both complete and incomplete information).

Each one of these extensions leads to new challenges but also contributes to the deployment of smart demand-side

management schemes that account for the aggregate user loads as well as the individual objectives of the users.

D. Demand-Side Management with Storage Devices
1) Introduction and Model: In the previous subsection, we focused on how the users can schedule their appliances

so as to minimize their billing charges. The underlying assumption was that the users are acquiring energy so as to

immediately use it for their appliances. However, in future smart grids, energy storage is expected to be a key component
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in smart homes, and, thus, it has a strong impact on demand-side management. For example, a user may decide to store

energy during off-peak hours and use this stored energy to schedule its appliances, instead of obtaining this energy

directly from the substation during peak hours. The introduction of smart home storage systems could significantly

improve the energy-efficiency of the electricity market, but is also accompanied with several challenges. For example,

if all homes decide to charge their energy storage devices concurrently, this could lead to an excess in demand which

can eventually be detrimental to the overall system. In addition, the storage behavior of the users could impact the

pricing in the market, and, thus, some users might find it better off to buy from the market than use a storage device

(considering factors such as the cost and lifespan of such a device).

Here, we are interested in a demand-side management model such as the one introduced in [33] in which the users

strategically choose on how to use their storage devices and when to buy energy. Hence, it is of interest to enable

strategic storage decisions by the consumers during demand-side management, so as to optimize a variety of factors.

In this respect, consider a set N of consumers each of which has a certain load lhi , i ∈ N at any given time interval h.

At each interval h, every user i ∈ N can decide on its storage profile shi which corresponds to the amount of energy

that i is willing to charge and/or discharge. In this setting, as discussed in [33], the objective is to enable the users to

choose their storage profile shi at every hour h so as to minimize the energy cost incurred over a whole period H , i.e.,

a whole day for example. Clearly, this strategic setting requires a game theoretic formulation, as seen next.

2) Noncooperative Game Formulation and Results: To determine the storage choices of the consumers, a nonco-

operative game can be formulated in which the players are the users in N , the strategies are the storage profiles shi

chosen at every time h, and the utilities are the costs incurred on the users over the whole day. In other words, in this

noncooperative game, the objective of each user is to decide, over a period H , on a storage profile si = [s1i , . . . , s
H
i ]

so as to optimize the following utility function [33]:

u(si, s−i) = −pi(si, s−i)

H∑
h=1

(shi + lhi ), (4)

where s−i is the vector reflecting the storage profiles of all players except i and pi(si, s−i) is the price in the energy

market which can be determined using approaches such as auctions or supply curves. Hereinafter, we consider that the

price is determined from a continuous and increasing supply curve such as in [33].

We note that, for any user i ∈ N , the feasible storage profiles shi that optimize (4) is subject to several constraints

that depend on three main characteristics of the storage device as described in [33]: its maximum capacity ei, its

storage efficiency αi which reflects the fraction of energy that can be extracted after storage, and its running cost ci
which depends on the physical characteristic of the storage device. The work in [33] shows that, under the considered

constraints, for storage devices with homogeneous characteristics, the Nash equilibria of the game correspond to the

storage profiles that minimize the global generator costs which are given by
∑H

h=1

∫ qh
0 bh(x)dx, where bh(·) is the

supply curve and qh is the total amount of energy traded by all users at time h (including storage and load demand).

Using these results, the work in [33] studies the proposed game under two scenarios: an ideal scenario in which the

players have a complete information about the market throughout time and an adaptive scenario in which the users

adapt their strategies using a day-ahead best response mechanism. In the latter scenario, the essence of the algorithm is

to allow the users to update their strategies based on their day-ahead knowledge of the market. These users can, then,

adapt their strategy continuously using their predictions on the market trends. The noncooperative game devised in [33]

is tested on empirical data from the UK market. The simulation results show that the learning scheme converges to a

Nash equilibrium while reducing the peak demand which also leads to reduce costs and carbon emissions. The results



17

also discuss the benefit of storage and how it impacts the social welfare of the system. Hence, these results show that

the use of game theory has, not only theoretical impacts, but also practical significance in future smart grids.

3) Future Extensions: Storage devices are expected to proliferate in most future smart grid systems. The work in

[33] showed that game theory can provide interesting solutions for managing storage at the users’ side, i.e., within the

context of demand-side management. To this end, we can foresee several future extensions for this area:

• Optimizing jointly the scheduling and storage profiles. For instance, in the studied storage game, the focus was

solely on optimizing the storage profile (i.e., whether to discharge or charge the storage device at the customer

premises), under a certain scheduled load. However, as seen in the game of Section IV-C, one can also optimize

the scheduling of appliances. Naturally, the scheduling and storage games are inter-related, since the result of the

scheduling impacts how the customer uses its storage device and vice versa. Hence, one important future direction

is to integrate both games into a joint scheduling and storage game in which the utility in (4) is optimized, not

only with respect to the storage profile, but also with respect to the loads which can be determined by using a

modified version of the scheduling-only game in Section IV-C.

• Considering that the energy source is also strategic and aims at maximizing its revenue. Here, one must include

an additional player in the game whose objective might not be aligned with the individual consumers’ goals.

• Allowing the consumers not only to use their storage devices but to also use privately owned renewable energy

sources or solar panels. In such a setting, each consumer has three options (use storage, buy from market, generate)

instead of only two (use storage, buy from market).

• Developing learning algorithms that do not rely solely on the day-ahead predictions such as in [33]. To do so, one

can adopt techniques from stochastic games to model the demand-side management problem with storage.

• Studying advanced techniques for generating the prices and their impact on the storage profiles.

E. Future Game Theoretic Approaches for Demand-Side Management

One of the key challenges of the future smart grid is designing demand-side management models that enable efficient

management of the power supply and demand. Demand-side management schemes will always face technical challenges

such as pricing, regulations, adaptive decision making, users’ interactions, and dynamic operation. All of these issues

are cornerstones to game theory, and, hence, this area is ripe for game theoretic techniques. In fact, demand-side

management is perhaps the most natural setting for applying game theory due to the need of combining economical

aspects such as pricing with strategic decision making by the various involved entities such as the suppliers and the

consumers. Beyond the application described so far, several potential demand-side management games can be studied:

• Developing online algorithms for learning the Nash equilibria of demand-side management noncooperative games

that involve short-term optimization of demand to match the supply, i.e., demand-response models. These algorithms

can be based on stochastic games.

• Studying the use of cooperative games for enabling a coordinated load management among the users which can,

subsequently, lead to a more efficient load distribution and less costs on the utility operator. Such a model can be

an extension of the coalition formation game presented for the micro-grids in Subsection III-B to the demand-side

of the power grid (i.e., applied at user-level instead of micro-grid or smart grid level).

• Studying the application of Bayesian games (i.e., games with imperfect and incomplete information) to develop

noncooperative techniques that the consumers can use when little is known about other consumers’ behavior.

• Investigating the impact of privacy on the demand-side management games.

A summary of the different applications of game theory for demand-side management is shown in Table II.
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TABLE II
SUMMARY OF GAME THEORETIC TECHNIQUES FOR DEMAND-SIDE MANAGEMENT.

Application Game Theoretic Technique Main Future Extensions
Subsection IV-C: Energy
consumption regulation
through appliances’
scheduling (such as in [32]).

Noncooperative Nash games
• Develop noncooperative games with not only multi-

ple consumers, but also multiple energy sources and
utility companies.

• Enable the consumers to optimize the tradeoff be-
tween waiting time and billing charges for shiftable
appliances.

• Study the dynamic game counterpart of the model.

Subsection IV-D: Demand-
side management with stor-
age (such as in [33]).

Noncooperative Nash games
• Consider a strategic energy source whose objective

is not aligned with that of the consumers.
• Introduce the notion of privately owned micro-grids

which impact the storage and usage strategies of the
consumers.

• Develop intelligent equilibrium learning algorithms
that account for instantaneous changes in the power
system parameters.

• Develop joint appliances scheduling and storage op-
timization using stochastic games.

Demand response market
models (such as in [26–30]).

Auction games and/or nonco-
operative games • Develop strategy-proof techniques for demand re-

sponse markets that are robust to cheating.
• Develop demand response models suitable for inter-

mittent energy sources such as wind turbines.
• Study more elaborate differential game models for

dynamic pricing in demand-response markets.

Other future applications in demand-side management could involve several game-theoretic techniques such as
stochastic games, online learning techniques, and Bayesian games.

V. COMMUNICATION IN THE SMART GRID

In this section, we survey the challenges of integrating communication technologies in smart grids and we discuss

a network formation game for multi-hop communications. Then, we discuss future opportunities for game theory in

smart grid communication.

A. Communication Technologies in the Smart Grid
One of the main characteristics of the smart grid is the ability to ensure a reliable information flow between a number

of heterogeneous nodes [34]. On the one hand, the smart grid elements must be able to communicate information such as

outage management to the utility company’s control center [34]. On the other hand, smart meters need to communicate

with nearby control centers so as to exchange information such as meter readings, pricing, or other control data [35].

Moreover, the communication of a load signal from the utility operator to electric vehicles or PHEVs is expected to be an

inherent component of smart grid communications [36–38]. More recently, enabling two-way communications between

the grid and PHEVs (or electric vehicles) has also received considerable attention in the research community [39–43].

In addition to these contributions, the Pacific Gas and Electric Company (PG&E) teamed up with Google and other car

vendors to implement and showcase some potential applications of the vehicle-to-grid technology [44]. Furthermore,

both the Electric Power Research Institute (EPRI) and the National Institute of Standards and Technology (NIST) have

published several use cases in which a two-way communication between the grid and the vehicles is required such as

for diagnostics [45], vehicle roaming [46], or others [47]. Hence, even though electric vehicles currently rely mainly

on the grid to vehicle communication, it is important to note that various research directions are being conducted to

better understand the potential of vehicle-to-grid communications and its challenges [36–47]. Clearly, enabling many

of the smart grid applications discussed so far such as demand-side management or micro-grid coordination as well as
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the integration of new elements such as electric vehicles is contingent upon the deployment of an efficient and reliable

communication architecture that can truly allow a “smart” operation of future power systems.

Several technologies such as power line communication (PLC) [35], [48–53] or wireless communication [54–57] are

being considered as candidate communication techniques for the smart grid. Each technology has its advantages and

shortcomings as well as its own range of applications. For instance, PLC is being considered for deployment by utility

companies around the world for smart metering, load control, or other applications [35], [49–52]. However, the use

of PLC for high-data rate applications is still in its infancy. Many advocates of PLC argue that it can be one of the

main communication technologies in the smart grid due to the low cost of its deployment [35], [49–52]. In contrast,

several recent works have proposed wireless communication techniques such as cognitive radio to serve as the main

networking technology in the smart grid [54–57].

In practice, the future smart grid will consist of a myriad of communication technologies that must coexist and

operate efficiently together [34], [58]. The communication layer of the smart grid will most likely be composed of

both wireless and wireline technologies [35]. Deploying the right technology for the right application is still an open

problem [34]. For example, one can leverage the already existing power lines in the distribution network and adopt

PLC for advanced metering infrastructures, however, to do so, many challenges such as reliability and performance

need to be addressed. In contrast, for long range transmission, wireless techniques may provide a better alternative due

to the possibility of adopting advanced approaches such as cognitive radio or cooperative communications [57]. Also,

security and privacy considerations might be a central issue in deciding on the best communication technology for the

future grid [35].

The integration of communication networks into a large-scale system such as the smart grid increases the complexity

in network design and analysis motivating the use of advanced tools such as game theory due to its proven efficiency

in wireless and wireline communications [2]. In this section, first, we investigate how network formation games can be

used to allow the smart grid elements to interact and perform multi-hop narrowband PLC communication. Then, we

discuss other existing opportunities for developing game theoretic frameworks tailored to smart grid communications.

B. Game Theory for Multi-hop Power Line Communications

1) Introduction and Model: Within large-scale networks such as the smart grid, PLC is one of the candidate

technologies that can be used to ensure data communication between the different smart grid elements such as sensors

that are typically used to collect data (e.g., household loads, monitoring data, maintenance, prices inquiry, etc.) and

transmit it to a control node [48]. Enabling such PLC-based applications faces a variety of challenges. For instance,

one main weakness of PLC is its reliability in communicating important smart grid data such as outage management

information [59]. This challenge stems from the fact that, in a PLC system, a line outage affects the entire set of devices

down stream from that line failure. Those down stream devices will be unable to report their status to this grid. Hence,

when designing PLC systems for the future grid, one must incorporate such reliability issues in the overall design,

using either backup lines or alternative line failure detection techniques such as in [60]. We do note that, the reliability

problems of PLC are one of the main motivations for research works which investigates alternative communication

techniques such as wired communication networks or wireless technologies (e.g., ZigBee, cognitive radio, etc.). Beyond

reliability, PLC design also faces additional technical challenges such as channel modeling, medium access, efficient

data transmission, and advanced network planning.

Despite these challenges, the use of narrowband PLC, which is a version of PLC which operates on narrowband

frequencies, constitutes a strong candidate for smart grid applications and has already been widely adopted for deploying
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advanced metering infrastructure in Europe [35], [49–52]. One of the main impediments of narrowband PLC is its limited

channel capacity which is shown to decrease rapidly with the communication distance as discussed in [59, Chap. 5].

As a result, developing intelligent and advanced algorithms that can overcome these capacity limitations in smart grid

systems is of central interest and a key enabler for several interesting smart grid applications.

Let us consider the set M of M physically interconnected smart grid elements. Here, a smart grid element could

represent any type of components in the smart grid that is equipped with communication capabilities such as smart

sensors or other entities. Each smart element in M needs to communicate different information such as control data,

load reports, pricing inquiries, or event detection data to a common access point (CAP). This access point can be

either a control center installed by the grid operator or a repeater that connects the considered area to other parts of

the smart grid. This model is based on our work in [53]. This communication can be enabled by using narrowband

PLC operating over a frequency range between 3 kHz and 500 kHz.5 The smart elements typically transmit their

data or control information directly to the CAP. During this process, the capacity Ck
i,CAPof any point-to-point PLC

communication link between a smart element i ∈ M and the CAP, using a certain frequency k (assigned by the CAP)

is given by the so-called water-filling solution [59, Chap. 5]:

Ck
i,CAP =

∫
f∈FB

i,k

1/2 log2

[
B

N(f)

]
df, (5)

where N(f) is a colored background noise and FB
i,k is the range of frequencies for channel k (which depends on the

bandwidth) for which we have N(f) ≤ B, where B is the solution to

Pi,re = Pi · 10−κdi,CAP =

∫
f∈FB

i,k

[B −N(f)] , (6)

with Pi being the transmit power of the smart element, κ being the attenuation factor which ranges between 40 dB/km

and 100 dB/km, and di,CAP being the distance between i and the CAP.

It is known that the capacity in (5) is large for small distances, however, it can decay very fast with distance [59].

This decrease in capacity can lead to an increase in the delay during the communication between the smart elements

and the CAP. Many of the emerging applications within smart grid networks such as demand-side management can

require a near real-time communication delay and, thus, high capacities. In consequence, it is of interest to design

an improved architecture that enables the smart elements to utilize narrowband PLC for sending their data, while

maintaining reasonable delays.

While most of the smart elements (such as smart meters) that are currently being deployed communicate exclusively

with the control center, the need for advanced sensing and data collection in the smart grid has incited many advanced

communication architectures in which the smart grid elements communicate, not only with the utility company or the

control center, but also with one another (e.g., by forming mesh or multi-hop architectures) as discussed in [35], [51],

[59], [61–67]. To this end, one possible way to overcome the limited capacity of PLC communication is to enable

a multi-hop PLC architecture as discussed in [53], [59], [62], [68] by leveraging on the possibility of having smart

elements which can use PLC to communicate, not only with the control center but also with one another as in [35],

[51], [59], [61–67]. By allowing the smart elements to relay each other’s data, the transmission delay can be reduced

due to two key characteristics: (i)- the capacity in (5) is very large at small to medium distances and (ii)- several groups

of smart elements may be physically co-located or neighboring (e.g., nearby homes) and, if well-equipped, they can

5Note that, in Europe, the maximum frequency for narrowband PLC is 148.5 kHz while in the USA it can go up to 500 kHz [59].
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communicate with one another. To perform this multi-hop PLC communication one of the main questions that needs

to be answered is “how can the smart elements interact and pick their next hop so as to optimize their delay?” As seen

next, game theory can provide us with an answer to this question.

2) Network Formation Game: Formulation and Results: To improve its communication delay, each smart element

may be able to communicate with a higher PLC capacity by using multi-hop transmissions. Thus, each smart element

needs to decide on the path that it will use to reach the CAP which can be either a direct communication path or

a multi-hop path. The smart element and the CAP would eventually be connected using a logically defined directed

network graph G(M, E) with M being the set of vertices of the graph and E being the set of all edges (links) between

pairs of smart elements. Our objective is to study how the smart elements can form this network graph, strategically.

To do so, we use the framework of network formation games, as done in [53]. Network formation games involve

situations in which a number of players need to interact in order to decide on the formation of a network graph among

them [2]. For multi-hop PLC, the network formation game is defined among the smart elements in M who seek to

communicate with the CAP over a communication tree structure that is rooted at the CAP. Note that, in this model, it

is assumed that all smart elements are physically interconnected such that PLC is possible between any pair. Certainly,

if some smart elements cannot reach each other using PLC, then they are not involved in the game. In this game, the

objective of each smart element i ∈ M is to select the path that minimizes its overall transmission delay when sending

its data to the CAP. Hence, given any tree structure G resulting from the strategy selections of all the smart elements

in M, the cost function of any i ∈ M in the current graph G can be expressed by [53]:

ci(G) =
∑

(il,il+1)∈qi

τil,il+1
. (7)

Here, qi = {i1, . . . , iL}, with i1 = i and iL being the CAP, represents the multi-hop path from i to the CAP and τil,il+1

is the delay experienced during the transmission from smart element il to smart element il+1 which can be given by:

τil,il+1
= R·Li

Ck
il,il+1

, where Li is the number of packets of R bits that i needs to transmit and Ck
il,il+1

is the capacity for

the narrowband PLC transmission between il and il+1 over channel k. In this model, similar to [53], it is assumed

that there exists a pre-determined frequency allocation scheme that selects the frequencies used between each two pairs

of smart elements. Moreover, each smart element can only accept a limited number of connections due to the limited

amount of available frequencies and bandwidth that it can allocate.

In this game, the objective of each smart element is to find its preferred partner for forwarding the packets and each

smart element is assumed to act on its own, without coordinating its strategy with neighboring meters. In other words,

if, at some point in time, a smart element 1 finds it beneficial to connect to a smart element 2, it will not coordinate

this choice with any of the other smart elements who may be impacted (positively or negatively) by smart element

1’s choice. Although a network formation game involves some form of cooperation (i.e., the smart elements helping

each other), the lack of coordination during the decision making process implies that a noncooperative solution model

is more suitable. Certainly, a fully cooperative game counter-part of this model in which all smart elements jointly

coordinate their strategies (similar to the joint coordination for energy management done in Section III-B) can also be

studied in future work in this area and its implications in terms of improved performance and additional costs in terms

of information exchange can be analyzed.

Accordingly, to form the network graph, an algorithm based on noncooperative techniques can be developed as

shown in [53]. Essentially, one can consider a noncooperative game in which the players are the smart elements with

the strategies being discrete sets representing the choices of a next hop done by the players. The smart elements can
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Fig. 3. A Nash network interconnecting M = 10 randomly deployed smart elements that interacted using a network formation game.

choose their multi-hop routes by using best response dynamics in which each smart element chooses the link that

minimizes its delay in (7), given an observed set of strategies from the other players, i.e., the current graph G. This

process, as discussed in [53], leads to a Nash network, i.e., a network in which no smart element can improve its delay

by changing its chosen path.

In Fig. 3, based on [53], we show a sample network consisting of a tree structure resulting from a network formation

game in a system with M = 10 randomly deployed smart elements. Fig. 3 shows that, while smart elements close to

the CAP such as 3 and 9, prefer to communicate directly with the CAP, other far away elements such as 6 or 7 obtain

a better delay by using a two-hop link instead of a direct CAP connection. This demonstrates that adopting a multi-hop

network formation game has a strong potential of improving the delay during PLC communication, if communication

between the smart elements is enabled. The network in Fig. 3 is a Nash network as no smart element can decrease its

delay by unilaterally changing its current link. For example, consider smart element 6 whose feasible strategies are all

other smart elements and the CAP. If smart element 6 decides to disconnect from 5 and connect to smart elements 1,

2, 7, 8, 9, or 10 its delay increase from 102.5 ms to about 382 seconds. Alternatively, if it connects to smart element

3, its delay increase from 10 ms to 153 ms and if it connects to smart element 4, its delay increase from 102.5 ms to

120.1 ms. Hence, clearly, smart element 6 has no incentive to change its current strategy. Moreover, the simulations in

[53] have further shown that adopting network formation games for multi-hop PLC can reduce the average delay per

smart element of at least 28.7% and 60.2% relative to the star network and a nearest neighbor algorithm, respectively.

3) Future Extensions: Using multi-hop PLC in future smart grid looks like a promising approach for enabling some

interesting applications such as advanced metering. To this end, one can investigate several challenges of multi-hop

PLC that go beyond the work done in [53], most notably:

• Introducing a dynamic approach for jointly performing network formation and channel allocation in a PLC network.

• Enabling the smart elements to make strategic decisions based, not only on their current observation of the network,

but also based on long-term observation goals (i.e., using foresighted network formation games).

• Analyzing implementation and deployment issues for allowing multi-hop PLC using network formation games. To

do so, one must investigate several practical issues such as interference, measurements, and others.

4) Future Opportunities for Game Theory in Smart Grid Communications: Communication protocols for smart grid

systems are still at their infancy. Most existing approaches are mainly focused on integration issues and projected

implementations. In the next few years, the proliferation of novel services operating over the smart grid will certainly

require advanced communication strategies. To this end, applying game theory for designing future communication
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TABLE III
SUMMARY OF GAME THEORETIC TECHNIQUES FOR COMMUNICATIONS IN SMART GRID SYSTEMS.

Application Game Theoretic Technique Main Future Extensions
Subsection V-B: Multi-hop
power line communication
(such as in [53]).

Network formation games
• Develop a dynamic model for jointly performing

graph formation and frequency allocation.
• Study foresighted network formation models for

power line communication.
• Analyze learning models for addressing practical im-

plementation concerns for network formation games
in smart grid systems.

The area of communications in smart grid systems is still at its infancy. Several future opportunities for game theoretic
approaches exist such as developing noncooperative techniques for communication protocol selection, study strategic
decisions in the presence of security concerns, develop secure routing algorithms using differential games, resource
allocation using Nash bargaining, and many other applications.

protocols for the smart grid is a promising area with little existing work so far. Many of the foreseen game theoretical

approaches will be tailored to the communication networking underlying the future smart grid services. For example,

in Sections III and IV, we developed several techniques for emerging applications in micro-grids and demand-side

management. Most of these approaches assume that the communication network is reliable and already deployed.

However, the nature of the communication network may strongly impact the efficiency of the application. As an

example, a communication network with high delays can lead to wrong pricing inquiries and, hence, strongly affect

the demand-side management algorithms. Hence, it is of interest to study how these game theoretical techniques can

be improved so as to account for the constraints of the communication architecture being employed and its impact

over these applications. Moreover, one important future direction is to enable the components of the smart grid to

strategically decide on the communication protocol that they will adopt, depending on their application constraints.

Beyond this, it is expected that a variety of wireless technologies need to co-exist in future smart grids. For

example, short-range technologies such as ZigBee or Bluetooth may be used for in-home applications, while long-

range wireless technologies such as cellular networks or classical wired technologies can be used for transmission over

long distances [35]. In this context, game theory is expected to have a strong impact of communication architectures in

the smart grid. One example is to develop game theoretic algorithms that can enable quality-of-service guarantees (e.g.,

in terms of outage or delay) for real-time communications which is crucial in many smart grid applications such as

pricing inquiries. In Table III, we show a summary of the applications of game theory for smart grid communications.

Finally, game theory can also be a key enabler for implementing advanced communication architecture such as

cognitive radio or cooperative networking within smart grids due to its proven robustness in overcoming classical

communication challenges such as interference mitigation, resource allocation, and spectrum sharing [2].

VI. SUMMARY

In this survey, we provided a comprehensive overview on the applications of game theory in smart grid networks. The

smart grid applications were carefully drawn from a broad range of problems spanning emerging areas such as micro-

grids, demand-side management, and communications. In each area, we have identified the main technical challenges

and presented an elaborate discussion on how game theory can be applied to address these challenges. Moreover, we

proposed several future directions for extending these approaches and adopting advanced game theoretic techniques, so

as to reduce the gap between theoretical models and practical implementations of future smart grids.

Essentially, from the surveyed works, we can clearly note that game theory has a strong potential to provide solutions

for pertinent problems in smart grids but also faces many design challenges. However, we also note that many of the

existing works have focused on classical static noncooperative games. Hence, for future works, it is of interest to
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investigate dynamic game models (both in cooperative and noncooperative settings) and their applications in smart grid

systems. The motivation for studying dynamic models stems from the pervasive presence of time-varying parameters

in smart grids such as generation, demand, among others. In this context, dynamic game theory could be a cornerstone

for capturing these parameters and designing better algorithms for improving the economical and technical aspects of

future smart grids.

Beyond dynamic games, it is also of interest to further investigate applications of Bayesian games in smart grids.

Bayesian games are a type of noncooperative games in which the players have very limited information on the objective

functions and strategies of their opponents. Given the large-scale nature of the smart grid, the involved players in any

game model might face several technical difficulties in estimating the exact strategies or objectives of the other players.

In this context, future work could investigate how Bayesian games can overcome this difficulty.

Due to space limitation, this article mainly addressed three emerging areas for applying game theory in smart grid

networks. However, the use of game theory can easily help overcome several technical challenges in other equally

interesting areas in smart grid systems as well. For example, securing cyber-physical systems that integrate multiple

technologies for communications, control, and sensing such as the smart grid is a challenging issue due to the need to

introduce security measures at different levels ranging from the communication and infrastructure level to the actual

control and power system. To this end, game theory can be used to address the vulnerabilities of smart grids at different

levels such as infrastructure, communication and information routing, and state estimation, among others. For example,

recent works such as [69] have discussed the use of differential games for securing the smart grid infrastructure given

the tradeoff between security and accessibility (in terms of delay and packet drop). Also, the work in [67] sheds a light

on how dynamic network formation games can be used to secure the routing of data in the smart grid system.

Beyond infrastructure and communications, game theory can also be used for securing power grid state estimation

against data injection attacks which have received considerable attention recently such as in [70] and references therein.

Hence, future work can investigate two important aspects of data injection in smart grids: (i)- the use of dynamic zero-

sum noncooperative games for modeling the interactions between a smart grid operator and a data injection attacker, and

(ii)- the use of noncooperative games, in conjunction with cooperative games, for studying coordinated data injection

attacks and corresponding defense strategies.

In a nutshell, this paper presented a comprehensive overview on the potential of applying game theory within future

smart grid systems. Clearly, game theory will constitute a strong tool for designing future smart grid systems that can

fulfill the promise of a completely integrated solution and satisfy the “sense, communicate, computer, control” paradigm.
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[67] Q. Zhu, D. Wei, and T. Başar, “Secure routing in smart grids,” in Proc. Workshop on the Foundations of Dependable and Secure Cyber-
Physical Systems, Chicago, IL, USA, Apr. 2011.

[68] L. Lampe, R. Schober, and S. Yiu, “Multihop transmission in power line communication networks: analysis and distributed space-time
coding,” in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC), New York, NY, USA, Jun. 2005.
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