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PROOF OF CONVERGENCE

In this section, we extend the convergence results of the finite state mean-field games in [1]
to the case of multiclass agents and when the transitional rate is a function of the control as
well as the mean field. We show the conditions under which the cost and distribution functions
of the N + 1 player game converges to corresponding functions in the mean-field game.

At time 0, it is assumed that the players of class (i, k) are distributed according to a given
initial distribution v;, = (ygk)leg . Thus, the number of players in each state are distributed

according to a multinomial distribution with parameter v.

In order to prove convergence, we rely on the following properties of our game

Proposition 1. In our problem,

1) The transitional rate G7. (a(t), ©(t)) is a Lipchitz function of ay(t) for all i, k.

2) The best response oy (Aju,~y(t)) is Lipschitz in Aju, ©(t), n(t), and m(t) V (i, k) € C
provided that the cost vy, (I, o, (), y(t)) is strongly convex.

3) The transitional rate G7; (a%,, ©(t)) is Lipchitz in Aju and O(t).

4) The function h(Au,~(t),1) is Lipchitz in Aju, ©(t), and 7(t).



Proof. 1) The transitional rate G7L(al.(t),O(t)) ) is only a function of o/, (t) when j =

2)

3)

4)

{Sx,Sr}, and, in this case, it is a linear function of o, (¢) and therefore Lipschitz in
o ().

Proving that the best response o, (Aju,+(t)) is Lipschitz in Aju, O(t) n(t) can be
shown using a similar proof as [1, Proposition 1] of and using the fact the transitional
rate G9! (ai(t), O(t)) is Lipchitz in oy (t). A consequence is that the best response
ol (Ayu,y(t)) is Lipchitz in my,(t) V(i,k) € C since both O(t) and 7(t) are linear
functions of m(t) V(i, k) € C. However, the proof relies on the assumption that that cost
vir (1, ol (t),~(t)) is strongly convex w.r.t al,(¢). In our problem, the second derivative of
the cost w.r.t. al, (t) is Q(~(t))* which can be zero if 20(t) + p(t) = H%“(t) Thus,
in order to ensure that the cost is strongly convex, the values of Q;x(7(t)) are scaled such
that the resulting values are always positive. Let @), (v(t)) the scaled valued. Q. (~(?))
can be possibly defined as @}, (v(t)) = Qix(v(t)) + Sk where Sy, is the scaling factor and
is given by Sy = 3k.

In order to prove this property, we first note that the transitional rate is only a function
of ;x(t) and O(t) only when the state is in {Sz, Sy}. We consider the transitional rate
GoT (ST (), (1)) = aiT (1) R (©(t)) and compute its partial derivative with respect to
o(t)

STl
?9%@) (a3 (1) = a@au) HOCIOE @<t>a@8@°‘ff*<t) +ai (0)- M

0 St
so0) Yik

to 2). Further, ©(t) and o} *(t) are bounded by 1. Thus
rate G57" is Lipschitz in ©(t).

() is bounded since a}"*(t) is Lipschitz in ©(t) according

ac; !
ik

» 790(1)

The partial derivative

(a57*(t)) and the transitional

Further, G57' (a57*(t), ©(t)) is a linear function of a}"*(t) and therefore is Lipschitz in
Ayu for all [ since o7 *(¢) is Lipschitz in Au.

This property can be proved for the remaining transitional probabilities using a similar
method.

This property easily follows from 1) and 3).
]

Next, we use the following useful property from [1, Proposition 7] which holds for the solution

N,n

Uy

! to our HJ equations.



N,n,l

Remark 1. Let w, ™" (t) be the solution of the HJ equations of the finite IoBT game. Then,

there exists C' > 0 and T > 0 such that for 0 < T < T,

n+ely,l n 2C
a0l < 5 @)

max ||,
where the norm Il used is the oo norm.
The property can be proved for our problem using a similar proof of [1, Proposition 7] and
using the property 2) from Proposition 1.
Further in this part, we replace h(A g, Y(t),1) by h(Ajui, m(t), 1) and h(Ajul ™, (1), 1)
by h(Au)™ mN(s),1) since both ©(t) and 7(t) are linear functions of m(t). Similarly, both

On(t) and 1y (¢) are both functions of (12 (t)) i x)ec Where m(t) = (m™(t))(i pec and m™ (s) =

(nik(s)

N )i,kyec- We present the convergence results in the following theorem.

Theorem 1. Let T* be as in Remark 1. There exists a constant C' independent of N, for which,
if T < T* satisfies u = TC < 1 then

c 1
E ‘r‘N ”rN < -
— ik (t) ik (t) — 1 _ ,U/ Nmax’ (3)

for all t € [0,T], where
N = maxpec N W(0) = E[lua(t) — i "(O112], VA(0) = (L2 — mi(0)])2

i (t) and w;,(t) are the meanfield and cost functions at the MFE, v, (t) and u.,™(t) are the

equilibrium distribution and cost value of N + 1 player game .

Proof. The proof of Theorem 1 relies on the following two lemmas.

Lemma 2. Define T defined as done in Remark 1, then, there exists C such that
W(t)<Cl+CE/T< £ 30 V(s))ds. )
N 1 (rv)ec

Proof. See appendix [

Lemma 3. Define T as done in Remark 1, then, there exists Cy such that

Cz
N, max

Vi <cE [ VN (5) + WA () + VY (s))ds + )

where (y,2) = arg max(,y) Vro(t) and Nyax = max(yyec Nro-

Proof. See appendix. 0



By adding (4) and (5) for all (i, k), we have

Sw0+ V0 < OF / t > (W + Do) + Gl
+CoE / ' Z (Wﬂi () + Vi () + VY (s)) + %'C'
< CE / Zv,ﬁj + W (s) + Niax (6)
where C' = max{C;|C|, Cy + 1, C,|C|}.
Let Wil + Vi = maxo<,<r Wi/ (t) + Vii' (¢). Then,

where ;1 = CT. Thus, the value function and the proportion of nodes converges uniformly
in distribution to the meanfield case. Thus, the meanfield equilibrium constitutes an ¢ Nash

equilibrium as demonstrated in [2].

APPENDIX

APPENDIX A: PROOF OF LEMMA 2

Let W (1,t) = E[(uﬁk( ) — ul ™t ))2] Thus, WA (t) = maxes W2 (I,t). To prove the
lemma, we apply Dynkin formula on functions of the process (I,m;;) . First, we define the

infinitesimal generator acting on a function of the process (I, ) ¢ : (S,N,[0,T]) — R as

A'Lk@ l s ik, S ZG ]7nik(8)78) - Qﬂ(l,nik(S),S)]

JES

+3° N 0l Gl (ant (s)) e (L man(s) + €5y, 8) — oL ma(s),9)l,  (8)

JESYES

n eik
where o) = oY (yn(n(t) + ep), Ayuj\;’ O+ ") for (i,k) # (¢/ k’) ((¢', k) is the class of
Non(t)-eyy ) for (i,k) # (', k') are

the reference player) and ol)? = ol **(yy(n(t) — elr), Ayuy,
the equilibrium acceptance probabilities for the finite [oBT game. Using Dynkin formula, we

have

T
Lol (7). man (7). ) = 1 () ma (0.0 = B| [ 52009 mia(5),9) + A (5 mn(s), ) )

where [;;,(s) is the state of the reference player at time s.



Next, we define ¢;(j, ik (t), ) = (ul(t) — u;, ™ (¢))?. Using (9), we have

W11 = WA T) = ~E[(uly™ (1) = uh(0)?] + B[ (™ (1) - uly (7))?

T
n d n, 1 N i
=B [ 2wl (o) uli(s) @)™ () - ula ds+/ DGyl el ) + ) -
t
T ik 1 n
= E/ 2(uﬁ’€”ﬂl - U k (ank Y, jv e (S) - Ui}i n’l(s)) - h(Alu%’ 7mN(S),Z) + h(Aluikv
t

+E / Zny G (@ () e ™ (5) — ™ (5)) — (™ ) — ™ ()2),

(,O(l, nik(s)7 S)]

m(s), 1)ds,

—E yGNzk Ny ntell, — N2 ds - B T2 Nnd,y o Nml WA w I
/ ZTL Qg ))(uzk (8) Uy, ( )) s+ /t ( (uik- (5) Uik (S))( ( lulk’m(s)a )7

- Alu. ™ mM(s),)ds.
ik

From Remark 1, we have >, nkaé\;’ik(a%’y(s))(uﬁi’nﬂ”’l(s) —uy™(s))? < 22 Then, since

the terminal conditions are zero, we have

T
W) < 52428 [ ) =l ) (A m(s). D)~ WA m¥(s)ds. (D

where K3 = KyT'.
Using Proposition 1, h is Lipschitz function of A;u;; and mlk(t) V(i, k) € C. Hence,

n nrv n
(B m(s), 1) — H(A™ m¥ (5),1) < Kal 3 1728 g (o)l] 4 ™ ). 12)
(ryv)ec

Then, from (11) and (12) and using the property ab < a® + b%, we have

nr )
Wil(t) < *+K4E/ > == x( —mm( I+ [[ug ™ (s) — u® (s)||ds,
(ryv)ec
W@ < =2 +K4IEI / W (s) V]Z (s)ds
(7 U)EC
< —+K4IE / Wh(s)+ > Vi(s)ds,
TU)EC
< == +Cl / VJZ(s)ds,
(rv)GC

13)

where C} = max{K3, K,}.
APPENDIX B: PROOF OF LEMMA 3

By applying Dynkin’s Formula (9) with ¢;(j, ., t) = (ml, (t) — %it))z forall [ € S, we get

sz]lj(lat) - M = ]E/O ddﬁl( ( )7nik(s)7 S) + Aiksol(lik(s)a nzk(s)v S)dsa (14)

(10)



where

nt (s ) )
O () mur(5).9) = —2( ")l () 30 Gl () o). (15)

Nig ;
JES
In what follows, we replace ©'(lix(s), i (s),s) by ©'(n(s),s) since ¢, is independent on
lix(s). Therefore,

Aipp(lin (), min(s),8) = Y nd G (el (8) (pu(nin(s) + €1, h) — @i(nin(s), ))
JjES
+ > b G (e () (r(nin(s) + €1, 8) — pu(nir(s), ),
J#l
l l l
_ N (5) o 1 ( ) ANk, N.j _ i (8) o 1 Nig(8) Nk, NI
= (20757 —miu() + ) DN O ) = GO - mho) - ) 3 G el o)
(16)
Now, using the property that >, GN Tt (s)) = =G (' (s)), we have
nt 1 J .
Awpll(s) ma() ) = (225t o))+ 1) > B G )i )
! 1 .nt ;
("t ) - ) "D G ),
< (2AMEZ —mi(s) XJ: PGl () + (17)
where the last equality follows since each transition rate is bounded. Thus,
¢ n4 S n] S . . . . . K
v <8 [ o ol > ) Gl (5) — iy ()G @ (9)) + 31
" min(5) () ik
-k [ o) () 32 TG 0) = G )
TG (R = ml(s)ds +
(18)
where K = K5 - T'. Since in our game, the transitional rate is Lipchitz in m;x(t) ¥V (i, k) and
in w;; (according to Proposition 1), and using Remark 1 we have for (i, k) = (¢/, k') ((¢/, k) is
the class of the reference player)
G§’7 (a” () = G (afi(s)
Nyy(8) + €5 Nn+e
Ki( ) [Imao(s) N—]H) (g " (s) — warl),
(rv)ec
nw( ) Nonteik n n
Ki( ) llmu(s) - D)+ 5=+ g7 () = a8+ (g™ (s) = wan(s)]]),
(rv)ec rv
nm,( ) 2 —+ 2K8 n
S Ko ) llma(s) - 1)+ + lug ™ (s) = win(s)]]. (19)

(ryw)ec NTU



Also, for (i, k) # (i, k'), we have

Gé’f(ai-i’j(s)) — Gi%(ad,(s))

nrv(s) — € N,n+e;
Kr( 37 llmn(s) N—||>+<||uik () = warll);
(rw)ec v
nr'u N,n—e“" ,n ,n
Ko( ) [lme(s) - — (D + 7+ ([l " (s) =" ()] + (g (s) — wa(s)]),
(rw)ecC rv
nrv( ) 2+2K8 n
< Ko( Y [llmey(s) - D+ =5 + llua(s) — win(s)] (20)
(rw)ec v

By substituting (20) into (18), we get

V0 <268 [ 1l (S llmnte) = 2520 + 2 4 ) - walo)l)ds

(rw)ec r

l

+E /:2(7%;]—5:) - mik(3)> EJ:G;];(@Zk(t))(nijff—f _ mgk(8)>ds n %,

szm/or%@—f— (Z () = 222+ S0 i s) = )] ) s

(r)ec

+K9E/ n ‘Z nls) mfk(s)‘ds,
0
1)
where KlO = KG + 2T(1 + K7) + Kg
Let (y, z) = argmax,,,||m,.(s) — "w@ ||. Thus,
n5(5) nm( ) ny(s)
P () (O Nimals) = 522D <D0 Hlmya(s) = 222
Nik Nyz
(rv)ec (rv)ec
ny:(8)
< C . - Yz 2
< [Clllmy () = "2
(22)
and
”ik(s) ! N N () N,
=~ ()™ () = wan()]] < =57 — mean(s)l]-[|ug ™ (s) — win(s)l],
ik ik
M\ S n
<N 1P+ ) —wal . @3)
ik
From (21), (22), and (23), we have
nzk ) n n z( ) Ko
Vi (1,1) < KH]E/ 1=y = M) + ug " (5) = wa ()P + || =5 = e ()P +
Yz max

(24)



where K11 = 2K7 + Ko and Nyax — Max(,) N,,. Thus,

V(0 < GE [ (V) + W) + VY (6)ds + 5
0 max

(25)

with CQ = HlaX{[(u7 KIO}-
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