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Abstract—In this paper, the problem of data correlation aware
resource management is studied for a network of wireless virtual
reality (VR) users communicating over cloud-based small cell net-
works (SCNs). In the studied model, the small base stations (SBSs)
with limited computation resource act as VR control centers that
collect the tracking information from VR users over the cellular
uplink and send them to the VR users over the downlink. In
such a setting, VR users may send or request the correlated or
similar data (panoramic images and tracking data). This potential
spatial data correlation can be factored into the resource allocation
problem to reduce the traffic load in both uplink and downlink. This
VR resource allocation problem is formulated as a noncooperative
game that allows jointly optimizing the computation and spectrum
resources, while being cognizant of the data correlation. To solve
this game, a transfer learning algorithm based on the machine
learning framework of echo state networks (ESNs) is proposed.
Unlike conventional reinforcement learning algorithms that must be
executed each time the environment changes, the proposed algorithm
can intelligently transfer information on the learned utility, across
time, to rapidly adapt to environmental dynamics due to factors
such as changes in the users’ content or data correlation. Simulation
results show that the proposed algorithm achieves up to 16.7% and
18.2% gains in terms of delay compared to the Q-learning with data
correlation and Q-learning without data correlation. The results also
show that the proposed algorithm has a faster convergence time than
Q-learning and can guarantee low delays.

I. INTRODUCTION

Virtual reality (VR) can enable users to virtually hike the Grand
Canyon or make a secret mission as a video game hero without
leaving their room. However, due to the wired connections of
conventional VR devices, the users are significantly restricted in
the type of actions that they can take and VR applications that
they can experience. To enable pervasive and truly immersive
VR applications, VR systems can be operated using wireless
networking technologies [1]. However, operating VR devices over
wireless cellular systems such as small cell networks (SCNs) faces
many challenges [1] that include tracking accuracy, extremely low
delay, and effective image compression.

The existing literature has studied a number of problems related
to wireless VR such as in [1]–[4]. The authors in [1] exposed
the future challenges of VR systems over a wireless network.
However, this work is restricted to preliminary surveys that do
not provide any technical solutions for optimizing wireless VR.
In [2], a channel access scheme for wireless multi-user VR
system is proposed. The authors in [3] proposed an alternate
current magnetic field-based tracking system to track the position
and orientation of a VR user’s head. However, existing works
such as in [2] and [3] only focus on the improvement of one
VR quality-of-service (QoS) metric such as tracking or delay.
Indeed, this prior art does not develop any VR-specific model
that can capture all factors of VR QoS (jointly consider uplink

and downlink) and, hence, these works fall short in addressing the
challenges of optimizing VR QoS for wireless users. In [4], we
proposed a wireless VR model that captures the tracking accuracy,
processing delay, and transmission delay and proposed a machine
learning based algorithm to solve the resource allocation problem.
However, this work is only focused on spectrum allocation that
ignores the data correlation over the data transmission of VR
users. Indeed, the sensors placed at a VR user can collect the
tracking data of other users and, hence, the tracking data of VR
users may have some correlation. Moreover, when the VR users
are watching a football game with different perspective, the cloud
only needs to transmit one 360◦ image to the SBS, then the SBS
can rotate the image and transmit it to different users. In this
case, the use of data correlation to reduce the traffic load in data
transmission can improve the transmission delay.

The main contribution of this paper is to introduce a novel
framework for enabling VR applications over wireless cellular
networks. To the best of our knowledge, this is the first work
that jointly considers the data correlation, spectrum resource
allocation, and computation resource allocation for VR over
cellular networks. Hence, our key contributions include:
• We propose a novel VR model to jointly capture the down-

link and uplink transmission delay, backhaul transmission
delay, and computation time thus effectively quantifying the
VR delay for all users in a wireless VR network.

• For the considered VR applications over wireless, we ana-
lyze resource blocks allocation jointly over, the uplink and
downlink and the computation resource allocation via the
uplink. We formulate the problem as a noncooperative game
in which the players are the small base stations (SBSs). Each
player seeks to find an optimal resource allocation scheme
to optimize a utility function that captures the VR delay.

• To solve this game, we propose a transfer learning algorithm
based on echo state networks (ESNs) [5] to find the Nash
equilibrium of the game. The proposed algorithm can intelli-
gently transfer information on the learned utility across time,
and, hence, allow adaptation to environmental dynamics due
to factors such as changes in the users’ data correlation.

• Simulation results show that the proposed algorithm can,
respectively, yield 16.7% and 18.2% gains in terms of delay
compared to Q-learning with data correlation and Q-learning
without data correlation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink and uplink transmission of a cloud-
based SCN servicing a set U of U wireless VR users and a set
B of B SBSs. Here, the downlink is used to transmit the VR
images displayed on each user’s VR device while the uplink is



used to transmit the tracking information that is used to determine
each VR user’s location and orientation. The SBSs are connected
to a cloud via capacity-constrained backhaul links and the SBSs
serve their users using the cellular band. Here, VF represents the
maximum backhaul transmission rate for all users. Here, we focus
on entertainment VR applications such as watching immersive
videos and playing immersive games.

In our model, the SBSs adopt an orthogonal frequency division
multiple access (OFDMA) technique and transmit over a set of V
of V uplink resource blocks and a set of S of S downlink resource
blocks. The coverage of each SBS is a circular area with radius r
and each SBS only allocates resource blocks to the users located
in its coverage range. We also assume that the resource blocks of
each SBS will all be allocated to the associated users.

A. Data Correlation Model

1) Downlink Data Correlation Model: In VR wireless net-
works, multiple VR users may play the same immersive game
with different locations and orientations. In this case, the cloud
can exploit the data correlation between the users that are playing
the same immersive game to reduce the traffic load of backhaul
links. For example, when the users are watching the same immer-
sive sports game, the cloud can extract the difference between the
VR images of these users and will only need to transmit the data
that is unique to each user to an SBS. However, when the VR
users are playing different immersive games, the data correlation
between the users is low and, hence, the cloud needs to transmit
entire VR images to the associated VR users. In order to define the
data correlation of VR images, we first assume that the number
of pixels that user i needs to construct the VR images is Ni
and the number of different pixels between any pair of users i
and k is Nik. Here, Nik is calculated by the cloud using image
processing methods such as motion search [6]. Then, the data
correlation between user i and user k can be defined as follows:

φik =
Nik

Ni +Nk
, (1)

where Nk is the number of pixels that user k needs to construct
the VR images during a period. Indeed, (1) captures the difference
between the images of users i and j. From (1), we can see that
when user i and user k are associated with the same SBS, the
cloud only needs to transmit Ni +Nj − (Ni +Nj)φij pixels to
that SBS.

2) Uplink Data Correlation Model: In the uplink, the users
must transmit the tracking information to the SBSs. The tracking
information is collected by the sensors placed at a VR user’s
headset or near the VR user. It has been shown that for most
data-gathering applications, the data source can be modeled as
a Gaussian field [7]. The uplink data is collected by the sensors
and, hence, the uplink data can be assumed to follow the Gaussian
distribution. We can assume that the tracking data, Xi, collected
by each VR user i is a Gaussian random variable with mean µi
and variance σ2

i . In wireless VR, observations from proximal VR
devices are often correlated due to the dense deployment density.
Hence, we consider the power exponential model [8] to capture
the spatial correlation of VR tracking data. Here, the covariance
σij between user i and user j separated by distance dij is:

σij = cov (Xi, Xj) = σiσje
−dαij/κ, (2)

where α and κ capture the significance of distance variation on
data correlation.

B. Delay Model

In an SCN, the VR images are transmitted from the cloud to the
SBSs then to the users. The tracking information is transmitted
from the users to the SBSs and processed at each corresponding
SBS. In this case, the backhaul links are only used for VR image
transmission and the transmission rate of each VR image from the
cloud to the SBS can be given as VFi = VF

U . Here, we assume that
the backhaul transmission rate of each user is equal and we do not
consider the optimization of the backhaul transmission. In a VR
model, we need to capture the VR transmission requirements such
as high data rate, low delay, and accurate tracking and, hence, we
consider the transmission delay as the main VR QoS metric of
interest. The downlink rate of user i associated with SBS j is:

cij (sij) =

S∑
k=1

sij,kBlog2 (1 + γij,k), (3)

where sij = [sij,1, . . . , sij,S ] is the vector of resource blocks
that SBS j allocates to user i with sij,k ∈ {1, 0}. Here,
sij,k = 1 indicates that resource block k is allocated to user i.

γij,k =
PBh

k
ij

N2
0 +

∑
l∈Rk,l 6=j

PBhkil
is the signal-to-interference-plus-noise

ratio (SINR) between user i and SBS j over resource block
k. Here, Rk represents the set of the SBSs that use downlink
resource block k, B is the bandwidth of each subcarrier, PB is
the transmit power of SBS j which is assumed to be equal for all
SBSs, N2

0 is the variance of the Gaussian noise and hkij = gkijp
−β
ij

is the path loss between user i and SBS j over resource block with
gkij is the Rayleigh fading parameter, dij is the distance between
user i and SBS j, and β is the path loss exponent. Based on (1)
and (3), the downlink transmission delay at time slot t is:

Dij (Li (φmax
i ) , sij) =

Li (φmax
i )

cij (sij)
+
Li (φmax

i )

VFU
, (4)

where Li (φmax
i ) is the data that user i needs to construct a VR

image during a period and φmax
i = max

k∈Uj ,k 6=i
(φik) is the maxi-

mum downlink data correlation between user i and other users
associated with SBS j. Finding the maximum data correlation
allows minimizing the downlink transmission data transmitted in
the downlink and that will be used construct a VR image. Here,
the first term is the transmission time from SBS j to user i and
the second term is the transmission time from the cloud to SBS
j. We assume that PU is the transmit power of each user which is
assumed to be equal for all users. The bandwidth of each uplink
resource block is also B. In this case, the uplink rate of each user
i associated with SBS j is:

cij (vij) =

V∑
k=1

vij,kBlog2

(
1 + γu

ij,k

)
, (5)

where vij = [vij,1, . . . , vij,V ] is the vector of resource
blocks that SBS j allocates to user i with vij,k ∈ {1, 0}.
γu
ij,k =

PUh
k
ij

σ2+
∑

l∈Uk,l 6=j
PUhkil

is the SINR between user i and SBS

j over resource block k with Uk represents the set of users that
use uplink resource blocks k. In this case, the uplink transmission
delay can be given by Ki(σ

max
i )

cij(vij)
where Ki is the data that needs to



be transmitted and σmax
i = max

k∈Uj ,k 6=i
(σik) is the maximum uplink

data correlation between user i and other SBS j’s associated
users. Similarly, finding the maximum data correlation allows
minimizing the uplink transmission data that SBS j uses to
determine user i’s location and orientation.

In the uplink, the tracking information can be directly processed
by the SBSs that have limited computation power. Here, the
computation resource of each SBS, c, represents its ability to
compute the tracking data. Each SBS j will allocate the total
computation power to the associated users and, hence, mij is
used to represent the computation power that SBS j allocates
to user i with

∑
i∈Uj mij = m. Uj represents the set of the

users associated with SBS j. The computation time of SBS j

that processes the tracking data collected by user i is Ki(σ
max
i )

mij
and the total uplink delay can be given by:

Du
ij (Ki(σ

max
i ),vij ,mij) =

Ki(σ
max
i )

cij (vij)
+
Ki(σ

max
i )

mij
, (6)

where the first term is the transmission time from user i to SBS
j and the second term is the computation time for user i’ data.
Here, the computation time depends on the computation resource
that SBS j allocates to each user that will affect the uplink delay.

C. Utility Function Model

In order to jointly consider the transmission delay in both
uplink and downlink, we introduce a method based on the
framework of multi-attribute utility theory [9] to construct an
appropriate utility function to capture transmission delay in both
uplink and downlink. We first introduce the utility functions of
transmission delay in uplink and downlink, separately. Then, we
formulate the utility function based on [9].

The utility function of downlink transmission delay is con-
structed based on the normalization of downlink transmission
delay, which can be given by:
D̄ij (Li (φmax

i ) , sij) ={
Dij,max−Dij(Li(φmax

i ),sij)
Dij,max−γD , Dij (Li (φmax

i ), sij) ≥ γD,
1, Dij (Li (φmax

i ), sij) < γD,
(7)

where γD is the maximal tolerable delay for each VR user (max-
imum supported by the VR system being used) and Dij,max =
max
sij

(Dij (Li (0) , sij)) is the maximal transmission delay. From

(7), we can see that, when the downlink transmission delay is
smaller than γD, the utility value will remain at 1. This is due to
the fact when the delay meets the system requirement, the network
will encourage the SBSs to reallocate the resource blocks to other
users. The utility function for the uplink transmission is:
D̄u
ij (Ki (σmax

i ) ,vij ,mij) ={
Du
ij,max−D

u
ij(Ki(σ

max
i ),vij ,mij)

Du
ij,max−γD

, Du
ij(Ki(σ

max
i ),vij ,mij)≥γu

D,

1, Du
ij(Ki(σ

max
i ),vij ,mij)<γ

u
D,

(8)

where γu
D is the maximal tolerable delay for the

VR tracking information transmission and Du
ij,max =

max
vij ,mij

(
Du
ij (Ki (0) ,vij ,mij)

)
is the maximal uplink delay.

Based on (7) and (8), the total utility function that captures both
downlink and uplink delay for user i associated with SBS j is:

Uij (sij ,vij ,mij) =

D̄ij (Li (φmax
i ) , sij) D̄

u
ij (Ki (σmax

i ) ,vij ,mij) . (9)

Here, Li (φmax
i ) and Ki (σmax

i ) are determined by the user
association scheme. In order to capture the gain that stems
from the allocation of the resource blocks and the computational
capabilities, we state the following result:

Theorem 1. The utility gain of user i’s delay due to an increase
in the amount of allocated resource blocks and computational
resources is:

i) The gain that stems from an increase in the allocated uplink
resource blocks, ∆Uij , is given by:

∆Uij =



fD̄u
ij

(
1

cij(vij)

)
, cij (∆vij) � cij (vij) ,

fD̄u
ij

(
cij(∆vij)
cij(vij)

2

)
, cij (∆vij) � cij (vij) ,

fD̄u
ij

(
cij(∆vij)

cij(vij)
2
+cij(vij)cij(∆vij)

)
, else,

(10)

where fD̄u
ij

(x) = D̄ij (Li (φmax
i ) , sij)

(
Ki(σ

max
i )x

Du
ij,max−γu

D

)
.

ii) The gain that stems from the increase in the number of
downlink resource blocks allocated to user i, ∆Uij , is:

∆Uij =


fD̄ij

(
1

cij(sij)

)
, cij (∆sij)� cij (sij) ,

fD̄ij

(
cij(∆sij)

cij(sij)
2

)
, cij (∆sij)� cij (sij) ,

fD̄ij

(
cij(∆sij)

cij(sij)
2+cij(sij)cij(∆sij)

)
, else,

(11)

where fD̄ij(x)=D̄u
ij(Ki (σmax

i ),vij ,mij)
(
Li(φ

max
i )x

Dij,max−γD

)
.

iii) The gain that stems from the increase in the amount of
computation resources, ∆m, allocated to user i, ∆Uij , is:

∆Uij = D̄ij(Li (φmax
i ) , sij)

(
Ki(σ

max
i )∆m(

Du
ij,max−γu

D

)
(mij(mij+∆m))

)
. (12)

Proof. For i), The gain that stems from an increase in the
allocated uplink resource blocks, ∆Uij , can be given by:

∆Uij = Uij (sij ,vij +∆vij ,mij)− Uij (sij ,vij ,mij)

= D̄ij (Li (φmax
i ) , sij) D̄

u
ij (Ki (σmax

i ) ,vij ,mij)

− D̄ij (Li (φmax
i ) , sij) D̄

u
ij (Ki (σmax

i ) ,vij +∆vij ,mij) .

(13)

Submitting (8) and (6) into (13), (13) can be re written as follows:

∆Uij = D̄ij (Li (φmax
i ) , sij)

 Ki(σ
max
i )

cji(vij)
− Ki(σ

max
i )

cji(vij+∆vij)

Du
ij,max − γu

D


= D̄ij (Li (φmax

i ) , sij)

 Ki(σ
max
i )cij(∆vij)

cij(vij)
2+cij(vij)cij(∆vij)

Du
ij,max − γu

D

 .

(14)

Here, when cij(∆vij) � cij(vij), cij(∆vij)

cij(vij)
2+cij(vij)cij(∆vij)

≈
1

cij(vij)
, and, consequently, ∆Uij =

D̄ij(Li(φ
max
i ),sij)Ki(σ

max
i )

(Dij,max−γu
D)cij(vij)

.

Moreover, as cij (∆vij) � cij (vij),
cij(∆vij)

cij(vij)
2+cij(vij)cij(∆vij)

≈ cij(∆vij)

cij(vij)
2 and, consequently,

∆Uij =
D̄ij(Li(φ

max
i ),sij)Ki(σ

max
i )cij(∆vij)

(Dij,max(vij)−γu
D)cij(vij)2

. For any other cases,

∆Uij =
D̄ij(Li(φ

max
i ),sij)Ki(σ

max
i )

(Dij,max−γu
D)

× cij(∆vij)

cij(vij)
2+cij(vij)cij(∆vij)



Cases ii) and iii) can be proved using similar method as case i).
This completes the proof.

From Theorem 1, we can see that the allocation of spectrum and
computation resource jointly determines the delay utility. Indeed,
Theorem 1 provides guidance for the SBSs when they select
actions in the learning algorithm that is proposed in Section III.

D. Problem Formulation

Given the defined system model, our goal is to develop an
effective resource allocation scheme that allocates resource blocks
and computation power to maximize the utility functions of all
users. However, the maximization problem depends not only on
the resource blocks allocation and computation resource alloca-
tion but also on the user associations. Moreover, the utility value
of each SBS depends not only on its own choice of resource
allocation scheme but also on the remaining SBSs’ schemes.
In addition, the data correlation among the users varies as the
period changes, which will affect the resource allocation and
user association. In this case, we first formulate a noncooperative
game G =

[
R, {Aj}j∈R , {Uj}j∈R

]
. In this game, the players

are the SBSs, Aj represents the action set of each SBS j, and
Uj is the utility function of each SBS j. Here, an action of
SBS j, aj , consists of: (i) downlink resource allocation vector
sj =

[
s1j , s2j , . . . , sUjj

]
, (ii) uplink resource allocation vector

vj =
[
v1j ,v2j , . . . ,vUjj

]
, and (iii) computation resource alloca-

tion vector mj =
[
m1j ,m2j , . . . ,mUjj

]
. Here, mij ∈M, i ∈ Uj

where M =
{
c
M , 2c

M , ..., c
}

is a finite set of M level fractions of
SBS j’s total computation resource mj . We assume that each SBS
j adopts one action at each time slot t. Then, the utility function
of each SBS j can be given by:

uj (aj ,a−j) =
1

T

T∑
t=1

∑
i∈Uj

Uij,t (sij ,vij , cij), (15)

where aj ∈ Aj is an action of SBS j and a−j denotes the action
profile of all SBSs other than SBS j. Indeed, (15) captures the

average utility value of each SBS j. Let πj,aij = 1
T

T∑
t=1

1{aj,t=aij}=

Pr (aj,t = aij) be the probability of SBS j using action aij .
Here, aj,t represents the action that SBS j uses at time t and
aj,t = aij denotes that SBS j adopts action aij at time t. πj =[
πj,a1j , . . . , πj,a|Aj |j

]
is the action selection strategy of SBS j

with |Aj | being the number of actions of SBS j. Based on the
definition of the strategy, the utility function in (15) is given by:

uj (aj ,a−j) =
1

T

T∑
t=1

Uj,t (aj ,a−j) =
∑
a∈A

(
Uj (aj ,a−j)

∏
j∈B

πj,aj

)
,

(16)

where a ∈ A with A being the action set of all SBSs.
Given the proposed model, our goal is to solve the proposed

resource allocation game. A solution for this game is the mixed-
strategy Nash equilibrium (NE), formally defined as follows [11]:
A mixed strategy profile π∗ = (π∗1, . . . ,π

∗
B) =

(
π∗j ,π

∗
−j
)

is a
mixed-strategy Nash equilibrium if, ∀j ∈ R and πj , we have:

uj
(
π∗j ,π

∗
−j
)
≥ uj

(
πj ,π

∗
−j
)
, (17)

where uj (πn,π−n) =
∑
a∈A

Uj (aj ,a−j)
∏
j∈B

πj,aj is the ex-

pected utility of SBS j when it selects the mixed strategy πj .For

our game, the mixed-strategy NE for the SBSs represents a
solution of the game at which each SBS j can minimize the
delay for its associated users, given the actions of its opponents.

III. ECHO STATE NETWORKS FOR SELF-ORGANIZING
RESOURCE ALLOCATION

Next, we introduce a transfer reinforcement learning (RL)
algorithm that can be used to find an NE of the VR game.
To satisfy the delay requirement for the VR transmission, we
propose a transfer RL algorithm based on the neural networks
framework of echo state networks (ESN) [16]. Traditional RL
algorithms such as Q-learning typically rely on a Q-table to record
the utility value. However, as the number of players and actions
increases, the number of utility values that the Q-table needs to
include will increase exponentially and, hence, the Q-table may
not be able to record all of the needed utility values. However, the
proposed algorithm uses a utility function approximation method
to record the utility value and, hence, it can be used for large
networks and large utility spaces. Moreover, a dynamic network
in which the users’ computation resource and data correlation
may change across the time, traditional RL algorithms need to be
executed each time the network changes. However, the proposed
ESN transfer RL algorithm can find the relationship of the utility
functions when the environment changes. After learning this
relationship, the proposed algorithm can use the historic learning
result to find a mixed strategy NE.

The proposed transfer RL algorithm consists of two compo-
nents: (i) ESN-based RL algorithm and (ii) ESN-based transfer
learning algorithm. The ESN-based RL algorithm is based on
our work in [4], and, thus, here, we just introduce the ESN-based
transfer learning algorithm.

We first assume that, before the users’ state information
changes, the strategy, action, and utility of each SBS j are πj , aj
and ûj (aj ,a−j), while the strategy, action, and utility of SBS
j, after the users’ state information changes, are πj , aj , and
û′j (aj ,a−j). Since the number of users associated with SBS j
is unchanged, the sets of action and strategy of SBS j will not
change when the users’ state information changes. In this case,
the proposed ESN-based transfer learning algorithm is used to
find the relationship between ûj (aj ,a−j) and û′j (aj ,a−j) when
SBS j only knows ûj (aj ,a−j). This means that the proposed
algorithm can transfer the information from the already learned
utility ûj (aj ,a−j) to the new utility û′j (aj ,a−j) that must be
learned. The ESN-based transfer learning algorithm of each SBS
j consists of three components: (a) input, (b) output, and (c) ESN
model, which are given by:
• Input: The ESN-based transfer learning algorithm takes the

strategies of the SBSs and the action of SBS j uses at time t as
input which is given by x′t,j = [π1, · · · , πB ,aj,t]T.
• Output: The output of the ESN-based transfer learning

algorithm at time t is the deviation of the utility values when
the users’ information changes y′j,t = û′j (aj,t)− ûj (aj,t).
• ESN Model: An ESN model is used to find the relationship

between the input x′t,j and output y′t,j . The ESN model consists
of the output weight matrix W

′out
j ∈ R1×Nw and the dynamic

reservoir containing the input weight matrix W
′in
j ∈ RNw×B+1,

and the recurrent matrix W ′
j ∈ RNw×Nw with Nw being

the number of the dynamic reservoir units. Here, the dynamic
reservoir is used to store historic ESN information that includes



TABLE I
ESN-BASED LEARNING ALGORITHM FOR RESOURCE ALLOCATION

Inputs: xj,t and x′j,t
Initialize: W in

j , W j , W out
j , W

′in
j , W ′j , W

′out
j , yj = 0, and y′j = 0.

for each time t do.
(a) Estimate the value of the utility function ûj,t based on (19).
if t == 1
(b) Set the mixed strategy πj,t uniformly.
else

(c) Set the mixed strategy πj,t based on the ε-greedy exploration.
end if
(d) Broadcast the index of the mixed strategy to other SBSs.
(e) Receive the index of the mixed strategy as input xj,t.
(f) Perform an action based on the mixed strategy.
(g) Use the index of the mixed strategies and action as input x′j,t.
(h) Estimate the value of the difference of utility function y′j,t.
(i) Update the dynamic reservoir state µj,t.
(j) Update the output weight matrix W out

j based on y′j,t.
end for

TABLE II
SYSTEM PARAMETERS

Parameter Value Parameter Value
F 1000 PB 20 dBm
B 2 MHz S, V 5, 5
Nw 1000 σ2 -95 dBm
Nv 6 λ, λ′ 0.03, 0.3
m 5 rB 30 m
α 2 VF 100 Gbit/s

input, reservoir state, and output. This information is used to build
the relationship between the input and output. The update process
of the dynamic reservoir will be given by:

µ′j,t = f
(
W ′

jµ
′
j,t−1 +W

′in
j x
′
j,t

)
. (18)

where f(x) = ex−e−x
ex+e−x is the tanh function. Based on the dy-

namic reservoir state, the ESN-based transfer learning algorithm
will combine with the output weight matrix to approximate the
deviation of the utility value, which can be given by:

y′j,t = W
′out
j,t µ

′
j,t, (19)

where W
′out
j,t is the output weight matrix at time slot t.

W
′out
j,t+1 = W

′out
j,t + λ′

(
û′j (aj,t)− ûj (aj,t)− y′j,t

)
µ′

T
j,t, (20)

where λ′ is the learning rate, and û′j,t is the actual deviation
between two utility values. In this case, the ESN-based transfer
learning algorithm can find the relationship between the utility
functions when the users’ state information changes and, hence,
reduce the iterations of the RL algorithm to learn the new utility
values. The proposed, distributed ESN-based learning algorithm
performed by each SBS j is summarized in Table I. The pro-
posed algorithm is guaranteed to converge to an NE and this
convergence follows from [4].

IV. SIMULATION RESULTS

For our simulations, we consider a cloud-based SCN deployed
within a circular area with radius r = 100 m. U = 25 users and
B = 4 SBSs are uniformly distributed in this SCN area. The rate
requirement of VR transmission is 25.32 Mbit/s [4]. The detailed
parameters are listed in Table III. For comparison purposes, we
use ESN algorithm and a baseline Q-learning algorithm in [4].

Fig. 1 shows how the average delay per user changes with
the number of SBSs varies. Fig. 1 shows that, as the number of
SBSs increases, the average delay of all algorithms decreases,
then increases. This is due to the fact that as the number of SBSs
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Fig. 1. Average delay of each user vs. number of SBSs.
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Fig. 2. Convergence of the proposed algorithm and Q-learning.

increases, the number of users located in each SBS’s coverage
decreases and, hence, the average delay decreases. However, as
the number of SBSs keeps increasing, the interference will also
increase. Fig. 1 also shows that our algorithm achieves up to
16.7% and 18.2% gains in terms of average delay compared to
the Q-learning with data correlation and Q-learning without data
correlation for 6 SBSs. This is due to the fact that our algorithm
can transfer information across time. From Fig. 1, we can also
see that the deviation between Q-learning algorithms decreases
as the number of SBSs changes. This implies that as the number
of SBSs increases, the number of users associated with each SBS
decreases and, hence, the data correlation of users decreases. Fig.
1 also shows that the delay gain of the proposed algorithm is small
compared with ESN algorithm. However, the proposed algorithm
can converge much faster as shown in Fig. 2.

Fig. 2 shows the number of iterations needed till convergence
for the proposed approach, ESN algorithm, and Q-learning with
data correlation when the users’ information changes. In this
figure, we can see that, as time elapses, the delay utilities for
all considered algorithms increase until convergence to their final
values. Fig. 2 also shows that the proposed algorithm achieves,
respectively, 22.5% and 36% gains in terms of the number of the
iterations needed to reach convergence compared to ESN algo-
rithm and Q-learning. This implies that the proposed algorithm
can apply the already learned utility value to the new utility value
that must be learned as the users’ information changes.

V. CONCLUSION

In this paper, we have proposed a novel resource allocation
framework for optimizing delay for wireless VR services with
data correlation. We have formulated the problem as a nonco-
operative game and we have proposed a novel transfer learning
algorithm based on echo state networks to solve the game. The
proposed learning algorithm can use the existing learning result



to directly find the optimal resource allocation when the users’
state information changes and, hence, can quickly converge to
a mixed-strategy NE. Simulation results have shown that the
proposed algorithm has a faster convergence time than Q-learning
and guarantees low delays for VR services.
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